一般零维系统异常集的混合符号-数值方法

J. Hauenstein, Alan C. Liddell
{"title":"一般零维系统异常集的混合符号-数值方法","authors":"J. Hauenstein, Alan C. Liddell","doi":"10.1145/2790282.2790288","DOIUrl":null,"url":null,"abstract":"Exceptional sets are the sets where the dimension of the fiber of a map is larger than the generic fiber dimension, which we assume is zero. Such situations naturally arise in kinematics, for example, when designing a mechanism that moves when the generic case is rigid. In 2008, Sommese and Wampler showed that one can use fiber products to promote such sets to become irreducible components. We propose an alternative approach using rank constraints on Macaulay matrices. Symbolic computations are used to construct the proper Macaulay matrices, while numerical computations are used to solve the rank-constraint problem. Various exceptional sets are computed, including exceptional RR dyads, lines on surfaces in C3, and exceptional planar pentads.","PeriodicalId":384227,"journal":{"name":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A hybrid symbolic-numeric approach to exceptional sets of generically zero-dimensional systems\",\"authors\":\"J. Hauenstein, Alan C. Liddell\",\"doi\":\"10.1145/2790282.2790288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exceptional sets are the sets where the dimension of the fiber of a map is larger than the generic fiber dimension, which we assume is zero. Such situations naturally arise in kinematics, for example, when designing a mechanism that moves when the generic case is rigid. In 2008, Sommese and Wampler showed that one can use fiber products to promote such sets to become irreducible components. We propose an alternative approach using rank constraints on Macaulay matrices. Symbolic computations are used to construct the proper Macaulay matrices, while numerical computations are used to solve the rank-constraint problem. Various exceptional sets are computed, including exceptional RR dyads, lines on surfaces in C3, and exceptional planar pentads.\",\"PeriodicalId\":384227,\"journal\":{\"name\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790282.2790288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790282.2790288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

例外集是指映射的纤维维数大于一般纤维维数的集合,我们假设一般纤维维数为零。这种情况在运动学中自然出现,例如,当设计一个机构在一般情况下是刚性时运动时。2008年,Sommese和Wampler表明,人们可以使用纤维产品来促进这些集合成为不可约的组件。我们提出了一种使用麦考利矩阵的秩约束的替代方法。符号计算用于构造合适的Macaulay矩阵,数值计算用于求解秩约束问题。计算了各种例外集,包括例外的RR对、C3中曲面上的线和例外的平面五边形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid symbolic-numeric approach to exceptional sets of generically zero-dimensional systems
Exceptional sets are the sets where the dimension of the fiber of a map is larger than the generic fiber dimension, which we assume is zero. Such situations naturally arise in kinematics, for example, when designing a mechanism that moves when the generic case is rigid. In 2008, Sommese and Wampler showed that one can use fiber products to promote such sets to become irreducible components. We propose an alternative approach using rank constraints on Macaulay matrices. Symbolic computations are used to construct the proper Macaulay matrices, while numerical computations are used to solve the rank-constraint problem. Various exceptional sets are computed, including exceptional RR dyads, lines on surfaces in C3, and exceptional planar pentads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信