基于CUDA的数字滤波器组实现及信号分类

D. Klionskiy, D. Kaplun, A. S. Voznesenskiy, V. V. Gulvanskiy, M. Kupriyanov
{"title":"基于CUDA的数字滤波器组实现及信号分类","authors":"D. Klionskiy, D. Kaplun, A. S. Voznesenskiy, V. V. Gulvanskiy, M. Kupriyanov","doi":"10.1109/EICONRUSNW.2015.7102239","DOIUrl":null,"url":null,"abstract":"The present paper discusses radio monitoring tasks and their solution using DFT-modulated filter banks. Filter bank software-hardware implementations are studied on the basis of Central Processing Unit (CPU) and Compute Unified Device Architecture (CUDA) with the use of Graphics Processing Unit (GPU). It is shown that CUDA technology is efficient for processing large datasets and outperforms computational results on CPU. The paper also considers signal classification in real time for different signal-to-noise ratios using a binary tree together with the iterative AdaBoost technique. Experiments show that it is possible to reach the total classification error of 10% for signals handled in radio monitoring tasks.","PeriodicalId":268759,"journal":{"name":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Digital filter bank implementation and signal classification on the basis of CUDA\",\"authors\":\"D. Klionskiy, D. Kaplun, A. S. Voznesenskiy, V. V. Gulvanskiy, M. Kupriyanov\",\"doi\":\"10.1109/EICONRUSNW.2015.7102239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper discusses radio monitoring tasks and their solution using DFT-modulated filter banks. Filter bank software-hardware implementations are studied on the basis of Central Processing Unit (CPU) and Compute Unified Device Architecture (CUDA) with the use of Graphics Processing Unit (GPU). It is shown that CUDA technology is efficient for processing large datasets and outperforms computational results on CPU. The paper also considers signal classification in real time for different signal-to-noise ratios using a binary tree together with the iterative AdaBoost technique. Experiments show that it is possible to reach the total classification error of 10% for signals handled in radio monitoring tasks.\",\"PeriodicalId\":268759,\"journal\":{\"name\":\"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUSNW.2015.7102239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2015.7102239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了无线电监测任务及其使用dft调制滤波器组的解决方案。在中央处理器(CPU)和计算统一设备架构(CUDA)的基础上,利用图形处理器(GPU)研究了滤波器组的软硬件实现。实验结果表明,CUDA技术在处理大型数据集方面是有效的,并且优于CPU上的计算结果。本文还考虑了使用二叉树和迭代AdaBoost技术对不同信噪比的信号进行实时分类。实验表明,对于无线电监测任务中处理的信号,可以达到10%的总分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital filter bank implementation and signal classification on the basis of CUDA
The present paper discusses radio monitoring tasks and their solution using DFT-modulated filter banks. Filter bank software-hardware implementations are studied on the basis of Central Processing Unit (CPU) and Compute Unified Device Architecture (CUDA) with the use of Graphics Processing Unit (GPU). It is shown that CUDA technology is efficient for processing large datasets and outperforms computational results on CPU. The paper also considers signal classification in real time for different signal-to-noise ratios using a binary tree together with the iterative AdaBoost technique. Experiments show that it is possible to reach the total classification error of 10% for signals handled in radio monitoring tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信