利用遗传算法构造循环一步多数逻辑可解码码

A. Yatribi, F. Ayoub, M. Belkasmi
{"title":"利用遗传算法构造循环一步多数逻辑可解码码","authors":"A. Yatribi, F. Ayoub, M. Belkasmi","doi":"10.1109/WINCOM.2015.7381301","DOIUrl":null,"url":null,"abstract":"In [6], a construction of cyclic one-step majority-logic decodable codes based on idempotent polynomials is given. However, the search for the feasible Parity-Check Idempotent runs through all possible combinations of cyclotomic cosets modulo n, satisfying some algebraic constraints, consequently, increasing the code length may result in very large dimension space search, and the search for the solution becomes more difficult. In this paper, we propose a Genetic Algorithm that aimes to construct new moderate and high lengths Binary Cyclic OSMLD codes, considered as LDPC codes, with high correction capacities. Our construction is very efficient and provide codes with high lenghts and high rates.","PeriodicalId":389513,"journal":{"name":"2015 International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Construction of cyclic one-step majority-logic decodable codes using genetic algorithms\",\"authors\":\"A. Yatribi, F. Ayoub, M. Belkasmi\",\"doi\":\"10.1109/WINCOM.2015.7381301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [6], a construction of cyclic one-step majority-logic decodable codes based on idempotent polynomials is given. However, the search for the feasible Parity-Check Idempotent runs through all possible combinations of cyclotomic cosets modulo n, satisfying some algebraic constraints, consequently, increasing the code length may result in very large dimension space search, and the search for the solution becomes more difficult. In this paper, we propose a Genetic Algorithm that aimes to construct new moderate and high lengths Binary Cyclic OSMLD codes, considered as LDPC codes, with high correction capacities. Our construction is very efficient and provide codes with high lenghts and high rates.\",\"PeriodicalId\":389513,\"journal\":{\"name\":\"2015 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WINCOM.2015.7381301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WINCOM.2015.7381301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在[6]中,给出了基于幂等多项式的循环一步多数逻辑可解码码的构造。然而,寻找可行的奇偶校验幂等需要经过模为n的所有可能的环形集组合,满足一些代数约束,因此,增加码长可能会导致非常大的维数空间搜索,求解变得更加困难。在本文中,我们提出了一种遗传算法,旨在构造新的中高长度二进制循环OSMLD码,认为是LDPC码,具有很高的校正能力。我们的结构非常高效,并提供高长度和高速率的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of cyclic one-step majority-logic decodable codes using genetic algorithms
In [6], a construction of cyclic one-step majority-logic decodable codes based on idempotent polynomials is given. However, the search for the feasible Parity-Check Idempotent runs through all possible combinations of cyclotomic cosets modulo n, satisfying some algebraic constraints, consequently, increasing the code length may result in very large dimension space search, and the search for the solution becomes more difficult. In this paper, we propose a Genetic Algorithm that aimes to construct new moderate and high lengths Binary Cyclic OSMLD codes, considered as LDPC codes, with high correction capacities. Our construction is very efficient and provide codes with high lenghts and high rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信