基于粗糙集理论的时空模板发现

Sanchita Mal-Sarkar, I. Sikder, V. Konangi
{"title":"基于粗糙集理论的时空模板发现","authors":"Sanchita Mal-Sarkar, I. Sikder, V. Konangi","doi":"10.1109/ICCITECHN.2010.5723833","DOIUrl":null,"url":null,"abstract":"Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-temporal template discovery using rough set theory\",\"authors\":\"Sanchita Mal-Sarkar, I. Sikder, V. Konangi\",\"doi\":\"10.1109/ICCITECHN.2010.5723833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实时流数据具有空间和时间的可变性,并且受制于无界或不断发展的实体。挑战在于如何在不同的空间和时间聚合这些无界数据流,以提供有效的实时决策。提出了一种基于粗糙集的流数据聚合滑动窗口框架。基于当前数据流,识别出感兴趣的时空模式,生成粗糙集If…Then决策规则。提出的形式已经在NOAA的TAO/TRITON项目的海面温度数据上进行了测试。这种基于模式的数据聚合方案有可能显著减少决策中的数据通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal template discovery using rough set theory
Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信