基于度量的Toeplitz网络分数维

Hassan Zafar, M. Javaid
{"title":"基于度量的Toeplitz网络分数维","authors":"Hassan Zafar, M. Javaid","doi":"10.52280/pujm.2023.550101","DOIUrl":null,"url":null,"abstract":": Metric dimension is one of the distance based graph - theoretic parameters which is widely used in the various disciplines of sciences such as computer science, chemistry, and engineering. The local fractional metric dimension is latest derived form of metric dimension and it is used to find the solutions of integer programming problems. In this paper, we have computed local fractional metric dimension of different families of\nToeplitz networks. It is also proved that the local fractional metric dimension of these Toeplitz networks remain bounded when the order of the\nnetworks approaches to infinity","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metric Based Fractional Dimension of Toeplitz Networks\",\"authors\":\"Hassan Zafar, M. Javaid\",\"doi\":\"10.52280/pujm.2023.550101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Metric dimension is one of the distance based graph - theoretic parameters which is widely used in the various disciplines of sciences such as computer science, chemistry, and engineering. The local fractional metric dimension is latest derived form of metric dimension and it is used to find the solutions of integer programming problems. In this paper, we have computed local fractional metric dimension of different families of\\nToeplitz networks. It is also proved that the local fractional metric dimension of these Toeplitz networks remain bounded when the order of the\\nnetworks approaches to infinity\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2023.550101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2023.550101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

度量维数是一种基于距离的图论参数,广泛应用于计算机科学、化学和工程等学科。局部分数阶度量维数是度量维数的最新派生形式,用于求整数规划问题的解。本文计算了toeplitz网络不同族的局部分数度量维数。并证明了当Toeplitz网络的阶数趋于无穷时,其局部分数度量维数保持有界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric Based Fractional Dimension of Toeplitz Networks
: Metric dimension is one of the distance based graph - theoretic parameters which is widely used in the various disciplines of sciences such as computer science, chemistry, and engineering. The local fractional metric dimension is latest derived form of metric dimension and it is used to find the solutions of integer programming problems. In this paper, we have computed local fractional metric dimension of different families of Toeplitz networks. It is also proved that the local fractional metric dimension of these Toeplitz networks remain bounded when the order of the networks approaches to infinity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信