手写字符识别的局部特征分析

S. Uchida, M. Liwicki
{"title":"手写字符识别的局部特征分析","authors":"S. Uchida, M. Liwicki","doi":"10.1109/ICPR.2010.479","DOIUrl":null,"url":null,"abstract":"This paper investigates a part-based recognition method of handwritten digits. In the proposed method, the global structure of digit patterns is discarded by representing each pattern by just a set of local feature vectors. The method is then comprised of two steps. First, each of J local feature vectors of a target pattern is recognized into one of ten categories (``0''--``9'') by the nearest neighbor discrimination with a large database of reference vectors. Second, the category of the target pattern is determined by the majority voting on the J local recognition results. Despite a pessimistic expectation, we have reached recognition rates much higher than 90% for the task of digit recognition.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of Local Features for Handwritten Character Recognition\",\"authors\":\"S. Uchida, M. Liwicki\",\"doi\":\"10.1109/ICPR.2010.479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a part-based recognition method of handwritten digits. In the proposed method, the global structure of digit patterns is discarded by representing each pattern by just a set of local feature vectors. The method is then comprised of two steps. First, each of J local feature vectors of a target pattern is recognized into one of ten categories (``0''--``9'') by the nearest neighbor discrimination with a large database of reference vectors. Second, the category of the target pattern is determined by the majority voting on the J local recognition results. Despite a pessimistic expectation, we have reached recognition rates much higher than 90% for the task of digit recognition.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了一种基于零件的手写体数字识别方法。在该方法中,通过仅用一组局部特征向量来表示数字模式,从而丢弃了数字模式的全局结构。该方法由两个步骤组成。首先,利用大型参考向量数据库,通过最近邻判别法将目标图案的J个局部特征向量中的每一个识别为10个类别(“0”—“9”)中的一个。其次,对J个局部识别结果进行多数投票,确定目标图案的类别。尽管有悲观的预期,但我们在数字识别任务上的识别率已经远远高于90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Local Features for Handwritten Character Recognition
This paper investigates a part-based recognition method of handwritten digits. In the proposed method, the global structure of digit patterns is discarded by representing each pattern by just a set of local feature vectors. The method is then comprised of two steps. First, each of J local feature vectors of a target pattern is recognized into one of ten categories (``0''--``9'') by the nearest neighbor discrimination with a large database of reference vectors. Second, the category of the target pattern is determined by the majority voting on the J local recognition results. Despite a pessimistic expectation, we have reached recognition rates much higher than 90% for the task of digit recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信