完成威布尔模型的参数估计与优化的检查间隔

A. Naganathan, M. Er, Xiang Li, H. Chan, Honglei Li, Jiaming Li, G. Vachtsevanos
{"title":"完成威布尔模型的参数估计与优化的检查间隔","authors":"A. Naganathan, M. Er, Xiang Li, H. Chan, Honglei Li, Jiaming Li, G. Vachtsevanos","doi":"10.1109/ICPHM.2013.6621424","DOIUrl":null,"url":null,"abstract":"The time for the occurrence of failure in a machine has been predicted using a Weibull model. The model uses the information of past failures and fits it into a probability distribution that yields a prediction of future failures. The operational data used for analysis is a series of failure times procured from an industrial machine used in a manufacturing system. This paper discusses three methods of parametric estimation of the Weibull distribution, namely the maximum likelihood estimation, the method of moments, and the least squares method, and compares their errors in estimation. In addition, for the maximum likelihood estimation method, we identify the parametric estimation error for various observation lengths to show the tradeoff between inspection load and error, and a time-to-failure prediction based on the parameters estimated.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete parametric estimation of the Weibull model with an optimized inspection interval\",\"authors\":\"A. Naganathan, M. Er, Xiang Li, H. Chan, Honglei Li, Jiaming Li, G. Vachtsevanos\",\"doi\":\"10.1109/ICPHM.2013.6621424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time for the occurrence of failure in a machine has been predicted using a Weibull model. The model uses the information of past failures and fits it into a probability distribution that yields a prediction of future failures. The operational data used for analysis is a series of failure times procured from an industrial machine used in a manufacturing system. This paper discusses three methods of parametric estimation of the Weibull distribution, namely the maximum likelihood estimation, the method of moments, and the least squares method, and compares their errors in estimation. In addition, for the maximum likelihood estimation method, we identify the parametric estimation error for various observation lengths to show the tradeoff between inspection load and error, and a time-to-failure prediction based on the parameters estimated.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用威布尔模型预测了机器发生故障的时间。该模型使用过去故障的信息,并将其拟合到一个概率分布中,从而产生对未来故障的预测。用于分析的操作数据是从制造系统中使用的工业机器获取的一系列故障时间。本文讨论了威布尔分布参数估计的三种方法,即极大似然估计、矩量法和最小二乘法,并比较了它们的估计误差。此外,对于最大似然估计方法,我们识别了不同观测长度的参数估计误差,以显示检测负荷与误差之间的权衡,并基于估计的参数进行故障时间预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete parametric estimation of the Weibull model with an optimized inspection interval
The time for the occurrence of failure in a machine has been predicted using a Weibull model. The model uses the information of past failures and fits it into a probability distribution that yields a prediction of future failures. The operational data used for analysis is a series of failure times procured from an industrial machine used in a manufacturing system. This paper discusses three methods of parametric estimation of the Weibull distribution, namely the maximum likelihood estimation, the method of moments, and the least squares method, and compares their errors in estimation. In addition, for the maximum likelihood estimation method, we identify the parametric estimation error for various observation lengths to show the tradeoff between inspection load and error, and a time-to-failure prediction based on the parameters estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信