基于VG-RAM失重神经网络的立体匹配

L. Veronese, Lauro Jose Lyrio Junior, Filipe Wall Mutz, Jorcy de Oliveira Neto, Vitor Barbirato
{"title":"基于VG-RAM失重神经网络的立体匹配","authors":"L. Veronese, Lauro Jose Lyrio Junior, Filipe Wall Mutz, Jorcy de Oliveira Neto, Vitor Barbirato","doi":"10.1109/ISDA.2012.6416556","DOIUrl":null,"url":null,"abstract":"Virtual Generalizing Random Access Memory Weightless Neural Networks (VG-RAM WNN) is an effective machine learning technique that offers simple implementation and fast training and test. We examined the performance of VG-RAM WNN on binocular dense stereo matching using the Middlebury Stereo Datasets. Our experimental results showed that, even without tackling occlusions and discontinuities in the stereo image pairs examined, our VG-RAM WNN architecture for stereo matching was able to rank at 114th position in the Middlebury Stereo Evaluation system. This result is promising, because the difference in performance among approaches ranked in distinct positions is very small.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stereo matching with VG-RAM Weightless Neural Networks\",\"authors\":\"L. Veronese, Lauro Jose Lyrio Junior, Filipe Wall Mutz, Jorcy de Oliveira Neto, Vitor Barbirato\",\"doi\":\"10.1109/ISDA.2012.6416556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual Generalizing Random Access Memory Weightless Neural Networks (VG-RAM WNN) is an effective machine learning technique that offers simple implementation and fast training and test. We examined the performance of VG-RAM WNN on binocular dense stereo matching using the Middlebury Stereo Datasets. Our experimental results showed that, even without tackling occlusions and discontinuities in the stereo image pairs examined, our VG-RAM WNN architecture for stereo matching was able to rank at 114th position in the Middlebury Stereo Evaluation system. This result is promising, because the difference in performance among approaches ranked in distinct positions is very small.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虚拟泛化随机存取记忆无重神经网络(VG-RAM WNN)是一种有效的机器学习技术,具有实现简单、训练和测试快速等特点。我们使用Middlebury立体数据集测试了VG-RAM小波神经网络在双目密集立体匹配中的性能。我们的实验结果表明,即使没有处理所检查的立体图像对中的遮挡和不连续性,我们的用于立体匹配的VG-RAM WNN架构也能够在Middlebury立体评估系统中排名第114位。这个结果是有希望的,因为在不同位置排名的方法之间的性能差异非常小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereo matching with VG-RAM Weightless Neural Networks
Virtual Generalizing Random Access Memory Weightless Neural Networks (VG-RAM WNN) is an effective machine learning technique that offers simple implementation and fast training and test. We examined the performance of VG-RAM WNN on binocular dense stereo matching using the Middlebury Stereo Datasets. Our experimental results showed that, even without tackling occlusions and discontinuities in the stereo image pairs examined, our VG-RAM WNN architecture for stereo matching was able to rank at 114th position in the Middlebury Stereo Evaluation system. This result is promising, because the difference in performance among approaches ranked in distinct positions is very small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信