基于神经网络和波形分析的电力电子电路故障诊断

Hao Ma, Dehong Xu, Yim-Shu Lee
{"title":"基于神经网络和波形分析的电力电子电路故障诊断","authors":"Hao Ma, Dehong Xu, Yim-Shu Lee","doi":"10.1109/PEDS.1999.794566","DOIUrl":null,"url":null,"abstract":"Based on neural network theory, a new fault diagnosis method for power electronic circuits is presented. By keeping the relations between faults and waveforms in a neural network, the neural network can be trained to detect faults. So automation of fault diagnosis can be realized. In this paper, the fault diagnosis of a three-phase SCR rectifier circuit will be taken as an example to illustrate the new method. Both simulation and experimental results are given.","PeriodicalId":254764,"journal":{"name":"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Fault diagnosis of power electronic circuits based on neural network and waveform analysis\",\"authors\":\"Hao Ma, Dehong Xu, Yim-Shu Lee\",\"doi\":\"10.1109/PEDS.1999.794566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on neural network theory, a new fault diagnosis method for power electronic circuits is presented. By keeping the relations between faults and waveforms in a neural network, the neural network can be trained to detect faults. So automation of fault diagnosis can be realized. In this paper, the fault diagnosis of a three-phase SCR rectifier circuit will be taken as an example to illustrate the new method. Both simulation and experimental results are given.\",\"PeriodicalId\":254764,\"journal\":{\"name\":\"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.1999.794566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.1999.794566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

基于神经网络理论,提出了一种新的电力电子电路故障诊断方法。通过在神经网络中保持故障与波形之间的关系,可以训练神经网络进行故障检测。从而实现故障诊断的自动化。本文将以三相可控硅整流电路的故障诊断为例进行说明。给出了仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of power electronic circuits based on neural network and waveform analysis
Based on neural network theory, a new fault diagnosis method for power electronic circuits is presented. By keeping the relations between faults and waveforms in a neural network, the neural network can be trained to detect faults. So automation of fault diagnosis can be realized. In this paper, the fault diagnosis of a three-phase SCR rectifier circuit will be taken as an example to illustrate the new method. Both simulation and experimental results are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信