基于地球同步卫星的太阳辐照度预报系统

Zhenzhou Peng, Shinjae Yoo, Dantong Yu, D. Huang
{"title":"基于地球同步卫星的太阳辐照度预报系统","authors":"Zhenzhou Peng, Shinjae Yoo, Dantong Yu, D. Huang","doi":"10.1109/SmartGridComm.2013.6688042","DOIUrl":null,"url":null,"abstract":"Solar irradiance variability, left unmitigated, will threat the stability of grid system, and might incur significant economical impacts. This paper focuses on a pipeline to predict solar irradiance from 30 minutes to 5 hours using geostationary satellite. It consists of two parts: cloud motion estimation and solar irradiance prediction using the estimated satellite images. The main challenge is image noise at all levels of processing from motion estimation to irradiance prediction. To overcome this problem, we propose to use optical flow motion estimation, and subsequently combine multiple evidences together using robust support vector regression (SVR). Our systematic evaluation shows significant improvements over the baseline in both motion estimation and irradiance prediction.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Solar irradiance forecast system based on geostationary satellite\",\"authors\":\"Zhenzhou Peng, Shinjae Yoo, Dantong Yu, D. Huang\",\"doi\":\"10.1109/SmartGridComm.2013.6688042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar irradiance variability, left unmitigated, will threat the stability of grid system, and might incur significant economical impacts. This paper focuses on a pipeline to predict solar irradiance from 30 minutes to 5 hours using geostationary satellite. It consists of two parts: cloud motion estimation and solar irradiance prediction using the estimated satellite images. The main challenge is image noise at all levels of processing from motion estimation to irradiance prediction. To overcome this problem, we propose to use optical flow motion estimation, and subsequently combine multiple evidences together using robust support vector regression (SVR). Our systematic evaluation shows significant improvements over the baseline in both motion estimation and irradiance prediction.\",\"PeriodicalId\":136434,\"journal\":{\"name\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2013.6688042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

太阳辐照度的变化如果不加以控制,将威胁电网系统的稳定性,并可能产生重大的经济影响。本文研究了利用地球同步卫星预报30分钟~ 5小时太阳辐照度的管道。它包括两个部分:云的运动估计和利用估算的卫星图像预测太阳辐照度。主要的挑战是从运动估计到辐照度预测的所有处理阶段的图像噪声。为了克服这个问题,我们提出使用光流运动估计,然后使用鲁棒支持向量回归(SVR)将多个证据组合在一起。我们的系统评估显示在运动估计和辐照度预测方面比基线有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar irradiance forecast system based on geostationary satellite
Solar irradiance variability, left unmitigated, will threat the stability of grid system, and might incur significant economical impacts. This paper focuses on a pipeline to predict solar irradiance from 30 minutes to 5 hours using geostationary satellite. It consists of two parts: cloud motion estimation and solar irradiance prediction using the estimated satellite images. The main challenge is image noise at all levels of processing from motion estimation to irradiance prediction. To overcome this problem, we propose to use optical flow motion estimation, and subsequently combine multiple evidences together using robust support vector regression (SVR). Our systematic evaluation shows significant improvements over the baseline in both motion estimation and irradiance prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信