Visualwind:用于摄像机感知风的新颖视频数据集

Qin Zhang, Jialang Xu, Matthew Crane, Chunbo Luo
{"title":"Visualwind:用于摄像机感知风的新颖视频数据集","authors":"Qin Zhang, Jialang Xu, Matthew Crane, Chunbo Luo","doi":"10.1109/IGARSS46834.2022.9884030","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to empower cameras to sense the wind from videos by capturing the motion information using optical flow and machine learning models, to potentially revolutionise the spatiotemporal resolution of existing professional wind records that are often at the city scale. To this end, we build a novel video dataset of over 6000 labeled video clips, covering eleven wind classes of the Beaufort scale. The videos are collected from social media, public cameras, and self-recording. Every video clip has a fixed 10 seconds length with varied frame rates, and contains scenes of various trees swaying in different scales of wind. We describe the key statistics of the dataset, how it was collected and annotated, and evaluate both one-stage and two-stage models trained and tested for wind scale estimation on this dataset to give some baseline performance figures. The dataset is publicly accessible11https://sme.uds.exeter.ac.uk/folders/48caf5102d6196b9645fab1f46e494ec. Please contact the authors to get the access key due to the server protection policy..","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"503 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visualwind: a Novel Video Dataset for Cameras to Sense the Wind\",\"authors\":\"Qin Zhang, Jialang Xu, Matthew Crane, Chunbo Luo\",\"doi\":\"10.1109/IGARSS46834.2022.9884030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to empower cameras to sense the wind from videos by capturing the motion information using optical flow and machine learning models, to potentially revolutionise the spatiotemporal resolution of existing professional wind records that are often at the city scale. To this end, we build a novel video dataset of over 6000 labeled video clips, covering eleven wind classes of the Beaufort scale. The videos are collected from social media, public cameras, and self-recording. Every video clip has a fixed 10 seconds length with varied frame rates, and contains scenes of various trees swaying in different scales of wind. We describe the key statistics of the dataset, how it was collected and annotated, and evaluate both one-stage and two-stage models trained and tested for wind scale estimation on this dataset to give some baseline performance figures. The dataset is publicly accessible11https://sme.uds.exeter.ac.uk/folders/48caf5102d6196b9645fab1f46e494ec. Please contact the authors to get the access key due to the server protection policy..\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"503 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目标是通过使用光流和机器学习模型捕获运动信息,使摄像机能够从视频中感知风,从而有可能彻底改变现有专业风记录的时空分辨率,这些记录通常在城市尺度上。为此,我们建立了一个新的视频数据集,包含超过6000个标记的视频片段,涵盖了11个波弗特级别的风类。这些视频是从社交媒体、公共摄像头和自录视频中收集的。每个视频片段都有固定的10秒长度和不同的帧率,并包含各种树木在不同规模的风中摇摆的场景。我们描述了数据集的关键统计数据,它是如何收集和注释的,并评估了在该数据集上训练和测试的一阶段和两阶段模型,以给出一些基线性能数据。数据集是可公开访问的11https://sme.uds.exeter.ac.uk/folders/48caf5102d6196b9645fab1f46e494ec。由于服务器保护策略,请联系作者获取访问密钥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualwind: a Novel Video Dataset for Cameras to Sense the Wind
The goal of this paper is to empower cameras to sense the wind from videos by capturing the motion information using optical flow and machine learning models, to potentially revolutionise the spatiotemporal resolution of existing professional wind records that are often at the city scale. To this end, we build a novel video dataset of over 6000 labeled video clips, covering eleven wind classes of the Beaufort scale. The videos are collected from social media, public cameras, and self-recording. Every video clip has a fixed 10 seconds length with varied frame rates, and contains scenes of various trees swaying in different scales of wind. We describe the key statistics of the dataset, how it was collected and annotated, and evaluate both one-stage and two-stage models trained and tested for wind scale estimation on this dataset to give some baseline performance figures. The dataset is publicly accessible11https://sme.uds.exeter.ac.uk/folders/48caf5102d6196b9645fab1f46e494ec. Please contact the authors to get the access key due to the server protection policy..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信