{"title":"基于深度强化学习的无人机电力巡检任务卸载策略","authors":"Tong Jin, Gu Minghao, Sha Yun, Deng Fang-ming","doi":"10.1117/12.2671522","DOIUrl":null,"url":null,"abstract":"Due to the limitation of computer capacity and energy of equipment, unmanned equipment cannot perform intensive computer tasks well during emergency failure inspection. In order to solve the above problems, this paper proposes a task waste strategy based on Deep Reinforcement Learning (DRL), which is mainly applicable to several UAVs and individual ES scenarios. First of all, an end edge cloud cooperative unloading architecture is built in the edge environment of UAV, and the problem of unloading tasks is classified as an optimization problem to achieve the minimum delay under the limit of the computing and communication resources of the Edge Server (ES). Secondly, the problem is constructed as Markov decision, and Deep Q Network (DQN) is used to solve the optimization problem, and experience playback mechanism and greedy algorithm are introduced into the learning process. Experiments show that the mitigation strategy has lower latency and higher reliability.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"13 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offloading strategy for UAV power inspection task based on deep reinforcement learning\",\"authors\":\"Tong Jin, Gu Minghao, Sha Yun, Deng Fang-ming\",\"doi\":\"10.1117/12.2671522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limitation of computer capacity and energy of equipment, unmanned equipment cannot perform intensive computer tasks well during emergency failure inspection. In order to solve the above problems, this paper proposes a task waste strategy based on Deep Reinforcement Learning (DRL), which is mainly applicable to several UAVs and individual ES scenarios. First of all, an end edge cloud cooperative unloading architecture is built in the edge environment of UAV, and the problem of unloading tasks is classified as an optimization problem to achieve the minimum delay under the limit of the computing and communication resources of the Edge Server (ES). Secondly, the problem is constructed as Markov decision, and Deep Q Network (DQN) is used to solve the optimization problem, and experience playback mechanism and greedy algorithm are introduced into the learning process. Experiments show that the mitigation strategy has lower latency and higher reliability.\",\"PeriodicalId\":227528,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"volume\":\"13 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offloading strategy for UAV power inspection task based on deep reinforcement learning
Due to the limitation of computer capacity and energy of equipment, unmanned equipment cannot perform intensive computer tasks well during emergency failure inspection. In order to solve the above problems, this paper proposes a task waste strategy based on Deep Reinforcement Learning (DRL), which is mainly applicable to several UAVs and individual ES scenarios. First of all, an end edge cloud cooperative unloading architecture is built in the edge environment of UAV, and the problem of unloading tasks is classified as an optimization problem to achieve the minimum delay under the limit of the computing and communication resources of the Edge Server (ES). Secondly, the problem is constructed as Markov decision, and Deep Q Network (DQN) is used to solve the optimization problem, and experience playback mechanism and greedy algorithm are introduced into the learning process. Experiments show that the mitigation strategy has lower latency and higher reliability.