gpu上模板计算的自动性能调优

Joseph Garvey, T. Abdelrahman
{"title":"gpu上模板计算的自动性能调优","authors":"Joseph Garvey, T. Abdelrahman","doi":"10.1109/ICPP.2015.39","DOIUrl":null,"url":null,"abstract":"We consider automatic performance tuning of stencil computations on Graphics Processing Units. We present a strategy that uses machine learning to determine the best way to use memory followed by a heuristic that divides the remaining optimizations into groups and exhaustively explores one group at a time. We evaluate our strategy using 102 synthetically generated OpenCL stencil kernels on an Nvidia GTX Titan GPU. We assess our strategy both in terms of the number of configurations explored during auto-tuning and the quality of the best configuration obtained. We explore two alternative heuristics that use different groupings of the optimizations. We show that, relative to a random sampling of the space and an expert search, our strategy achieves a reduction in the number of configurations explored of up to 80% and 84% respectively while also finding better performing configurations.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Automatic Performance Tuning of Stencil Computations on GPUs\",\"authors\":\"Joseph Garvey, T. Abdelrahman\",\"doi\":\"10.1109/ICPP.2015.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider automatic performance tuning of stencil computations on Graphics Processing Units. We present a strategy that uses machine learning to determine the best way to use memory followed by a heuristic that divides the remaining optimizations into groups and exhaustively explores one group at a time. We evaluate our strategy using 102 synthetically generated OpenCL stencil kernels on an Nvidia GTX Titan GPU. We assess our strategy both in terms of the number of configurations explored during auto-tuning and the quality of the best configuration obtained. We explore two alternative heuristics that use different groupings of the optimizations. We show that, relative to a random sampling of the space and an expert search, our strategy achieves a reduction in the number of configurations explored of up to 80% and 84% respectively while also finding better performing configurations.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们考虑图形处理单元上模板计算的自动性能调优。我们提出了一种策略,该策略使用机器学习来确定使用内存的最佳方式,然后使用启发式方法将剩余的优化分成组,并一次详尽地探索一个组。我们在Nvidia GTX Titan GPU上使用102个综合生成的OpenCL模板内核来评估我们的策略。我们根据自动调优期间探索的配置数量和获得的最佳配置的质量来评估我们的策略。我们探索了使用不同优化分组的两种可选启发式方法。我们表明,相对于空间的随机抽样和专家搜索,我们的策略分别将探索的配置数量减少了80%和84%,同时还找到了性能更好的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Performance Tuning of Stencil Computations on GPUs
We consider automatic performance tuning of stencil computations on Graphics Processing Units. We present a strategy that uses machine learning to determine the best way to use memory followed by a heuristic that divides the remaining optimizations into groups and exhaustively explores one group at a time. We evaluate our strategy using 102 synthetically generated OpenCL stencil kernels on an Nvidia GTX Titan GPU. We assess our strategy both in terms of the number of configurations explored during auto-tuning and the quality of the best configuration obtained. We explore two alternative heuristics that use different groupings of the optimizations. We show that, relative to a random sampling of the space and an expert search, our strategy achieves a reduction in the number of configurations explored of up to 80% and 84% respectively while also finding better performing configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信