2/sup - n维欧氏空间中的球面7-设计

V. Sidelnikov
{"title":"2/sup - n维欧氏空间中的球面7-设计","authors":"V. Sidelnikov","doi":"10.1109/ISIT.1998.708967","DOIUrl":null,"url":null,"abstract":"We consider a finite subgroup /spl Theta//sub n/ of the group O(N) of orthogonal matrices, where N=2/sup n/, n=1, 2, ... . This group was defined in [4] and we use it to construct spherical designs in the 2/sup n/-dimensional Euclidean space R/sup N/. We prove that representations /spl rho//sub 1/, /spl rho//sub 2/ and /spl rho//sub 3/ of the group /spl Theta//sub n/ on the spaces of harmonic polynomials of degrees 1, 2 and 3 respectively are irreducible. This together with the earlier results [1, 3] imply that the orbit /spl Theta//sub n,2/x of any initial point x on the unit sphere S/sub N-1/ is a 7-design in the Euclidean space of dimension 2/sup n/.","PeriodicalId":133728,"journal":{"name":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spherical 7-design in the 2/sup n/-dimensional Euclidean space\",\"authors\":\"V. Sidelnikov\",\"doi\":\"10.1109/ISIT.1998.708967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a finite subgroup /spl Theta//sub n/ of the group O(N) of orthogonal matrices, where N=2/sup n/, n=1, 2, ... . This group was defined in [4] and we use it to construct spherical designs in the 2/sup n/-dimensional Euclidean space R/sup N/. We prove that representations /spl rho//sub 1/, /spl rho//sub 2/ and /spl rho//sub 3/ of the group /spl Theta//sub n/ on the spaces of harmonic polynomials of degrees 1, 2 and 3 respectively are irreducible. This together with the earlier results [1, 3] imply that the orbit /spl Theta//sub n,2/x of any initial point x on the unit sphere S/sub N-1/ is a 7-design in the Euclidean space of dimension 2/sup n/.\",\"PeriodicalId\":133728,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1998.708967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1998.708967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑正交矩阵群O(n)的有限子群/spl Theta//sub n/,其中n= 2/sup n/, n= 1,2, ... .这个群在[4]中被定义,我们用它来构造2/sup n/维欧氏空间R/sup n/中的球面设计。证明了群/spl Theta//sub n/的表示/spl rho//sub 1/、/spl rho//sub 2/和/spl rho//sub 3/分别在1次、2次和3次调和多项式的空间上是不可约的。这与先前的结果[1,3]表明,在单位球面S/下标n -1/上任意初始点x的轨道/spl Theta//下标n,2/x是在2维欧几里德空间中的7-设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical 7-design in the 2/sup n/-dimensional Euclidean space
We consider a finite subgroup /spl Theta//sub n/ of the group O(N) of orthogonal matrices, where N=2/sup n/, n=1, 2, ... . This group was defined in [4] and we use it to construct spherical designs in the 2/sup n/-dimensional Euclidean space R/sup N/. We prove that representations /spl rho//sub 1/, /spl rho//sub 2/ and /spl rho//sub 3/ of the group /spl Theta//sub n/ on the spaces of harmonic polynomials of degrees 1, 2 and 3 respectively are irreducible. This together with the earlier results [1, 3] imply that the orbit /spl Theta//sub n,2/x of any initial point x on the unit sphere S/sub N-1/ is a 7-design in the Euclidean space of dimension 2/sup n/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信