基于光谱的树体检测和树冠圈定多级形态学主动轮廓算法

Chao-Cheng Wu, Yi-Ling Chen, Jheng-De Wu, Chinsu Lin
{"title":"基于光谱的树体检测和树冠圈定多级形态学主动轮廓算法","authors":"Chao-Cheng Wu, Yi-Ling Chen, Jheng-De Wu, Chinsu Lin","doi":"10.1109/IGARSS.2014.6946820","DOIUrl":null,"url":null,"abstract":"Multi-level Morphological Active Contour algorithm (MMAC) had been proposed to effectively increase recognition rate of individual tree in mountainous areas. However, it was specifically designed for LiDAR CHM data only, which make the algorithm incompatible with any other type of remote sensing data. To relieve constraints of MMAC this manuscript proposed a spectral-based MMAC (SB-MMAC), which retains the framework of MMAC by replacing height information from LiDAR CHM model with spectral information from multispectral images. The proposed SB-MMAC is comprised of two stages, seed blobs detection and modified active contour model. The experimental study further demonstrated the utility of SB-MMAC.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spectral-based multi-level Morphological Active Contour algorithm for individual tree detection and crown delineation\",\"authors\":\"Chao-Cheng Wu, Yi-Ling Chen, Jheng-De Wu, Chinsu Lin\",\"doi\":\"10.1109/IGARSS.2014.6946820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-level Morphological Active Contour algorithm (MMAC) had been proposed to effectively increase recognition rate of individual tree in mountainous areas. However, it was specifically designed for LiDAR CHM data only, which make the algorithm incompatible with any other type of remote sensing data. To relieve constraints of MMAC this manuscript proposed a spectral-based MMAC (SB-MMAC), which retains the framework of MMAC by replacing height information from LiDAR CHM model with spectral information from multispectral images. The proposed SB-MMAC is comprised of two stages, seed blobs detection and modified active contour model. The experimental study further demonstrated the utility of SB-MMAC.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6946820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6946820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了有效提高山区树木单株的识别率,提出了多层次形态主动轮廓算法(MMAC)。然而,它是专门为激光雷达CHM数据设计的,这使得该算法与任何其他类型的遥感数据不兼容。为了消除MMAC算法的局限性,本文提出了一种基于光谱的MMAC算法(SB-MMAC),该算法通过将LiDAR CHM模型的高度信息替换为多光谱图像的光谱信息,保留了MMAC算法的框架。提出的SB-MMAC算法分为种子斑点检测和改进的活动轮廓模型两个阶段。实验研究进一步证明了SB-MMAC的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral-based multi-level Morphological Active Contour algorithm for individual tree detection and crown delineation
Multi-level Morphological Active Contour algorithm (MMAC) had been proposed to effectively increase recognition rate of individual tree in mountainous areas. However, it was specifically designed for LiDAR CHM data only, which make the algorithm incompatible with any other type of remote sensing data. To relieve constraints of MMAC this manuscript proposed a spectral-based MMAC (SB-MMAC), which retains the framework of MMAC by replacing height information from LiDAR CHM model with spectral information from multispectral images. The proposed SB-MMAC is comprised of two stages, seed blobs detection and modified active contour model. The experimental study further demonstrated the utility of SB-MMAC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信