COPA: Kubernetes的组合自动缩放方法

Zhijun Ding, Qichen Huang
{"title":"COPA: Kubernetes的组合自动缩放方法","authors":"Zhijun Ding, Qichen Huang","doi":"10.1109/ICWS53863.2021.00061","DOIUrl":null,"url":null,"abstract":"Autoscaling is one of the major features of Cloud Computing aiming to improve the Quality-of-Service(QoS) in response to fluctuating workloads. Existing state-of-the-art autoscaling methods for Kubernetes focus on single scaling mode, that is, only horizontal scaling and only vertical scaling. For horizontal scaling, a high resource usage rate cannot be guaranteed sometimes; and for vertical scaling, microservice instances appear a performance ceiling that does not grow indefinitely as the supply of resources increases. In this paper, we propose a novel combined scaling method called COPA. Based on the collected microservice performance data, real-time workload, expected response time, and microservice instances scheme at runtime, COPA uses the queuing network model to calculate a combined scaling scheme that aims to minimize the default cost and resource cost. We evaluated our approach in a Kubernetes cluster, and compare it with existing state-of-the-art autoscaling methods under four different workload types. Such experiments show a reduction of ×1.22 for resource cost while ensuring the QoS as compared to the baseline method.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COPA: A Combined Autoscaling Method for Kubernetes\",\"authors\":\"Zhijun Ding, Qichen Huang\",\"doi\":\"10.1109/ICWS53863.2021.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoscaling is one of the major features of Cloud Computing aiming to improve the Quality-of-Service(QoS) in response to fluctuating workloads. Existing state-of-the-art autoscaling methods for Kubernetes focus on single scaling mode, that is, only horizontal scaling and only vertical scaling. For horizontal scaling, a high resource usage rate cannot be guaranteed sometimes; and for vertical scaling, microservice instances appear a performance ceiling that does not grow indefinitely as the supply of resources increases. In this paper, we propose a novel combined scaling method called COPA. Based on the collected microservice performance data, real-time workload, expected response time, and microservice instances scheme at runtime, COPA uses the queuing network model to calculate a combined scaling scheme that aims to minimize the default cost and resource cost. We evaluated our approach in a Kubernetes cluster, and compare it with existing state-of-the-art autoscaling methods under four different workload types. Such experiments show a reduction of ×1.22 for resource cost while ensuring the QoS as compared to the baseline method.\",\"PeriodicalId\":213320,\"journal\":{\"name\":\"2021 IEEE International Conference on Web Services (ICWS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Web Services (ICWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS53863.2021.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动伸缩是云计算的主要特性之一,旨在提高服务质量(QoS),以响应波动的工作负载。Kubernetes现有的最先进的自动扩展方法专注于单一扩展模式,即只有水平扩展和垂直扩展。对于水平扩展,有时无法保证较高的资源使用率;对于垂直扩展,微服务实例出现了一个性能上限,它不会随着资源供应的增加而无限增长。本文提出了一种新的组合标度方法COPA。基于收集到的微服务性能数据、实时工作负载、预期响应时间和运行时的微服务实例方案,COPA使用排队网络模型计算出旨在最小化默认成本和资源成本的组合扩展方案。我们在Kubernetes集群中评估了我们的方法,并将其与四种不同工作负载类型下现有的最先进的自动伸缩方法进行了比较。这些实验表明,与基线方法相比,在保证QoS的同时减少了×1.22资源成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COPA: A Combined Autoscaling Method for Kubernetes
Autoscaling is one of the major features of Cloud Computing aiming to improve the Quality-of-Service(QoS) in response to fluctuating workloads. Existing state-of-the-art autoscaling methods for Kubernetes focus on single scaling mode, that is, only horizontal scaling and only vertical scaling. For horizontal scaling, a high resource usage rate cannot be guaranteed sometimes; and for vertical scaling, microservice instances appear a performance ceiling that does not grow indefinitely as the supply of resources increases. In this paper, we propose a novel combined scaling method called COPA. Based on the collected microservice performance data, real-time workload, expected response time, and microservice instances scheme at runtime, COPA uses the queuing network model to calculate a combined scaling scheme that aims to minimize the default cost and resource cost. We evaluated our approach in a Kubernetes cluster, and compare it with existing state-of-the-art autoscaling methods under four different workload types. Such experiments show a reduction of ×1.22 for resource cost while ensuring the QoS as compared to the baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信