{"title":"具有随机孔的二维圆柱体的有效RCS估计","authors":"Meilin Liu, J. Hesthaven, Shaobin Liu","doi":"10.1109/MAPE.2009.5355570","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient method to estimate the radar cross section (RCS) mean and variance of a 2-D cylinder with random holes. This model has been applied extensively in microwave engineering, e.g., frequency selective surface (FSS). Firstly, we develop a deterministic RCS solver based on nodal Discontinuous Galerkin Finite Element Method (DG-FEM). Then we quantify the RCS mean and variance of a 2-D cylinder with random holes based on the stochastic collocation method. We use the Gauss-Patterson quadrature formula to solve the resulting stochastic equation. Numerical results show how the RCS in scattering is affected by the uncertainty in shape of the object.","PeriodicalId":280404,"journal":{"name":"2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient RCS estimation of 2-dimensional cylinder with random holes\",\"authors\":\"Meilin Liu, J. Hesthaven, Shaobin Liu\",\"doi\":\"10.1109/MAPE.2009.5355570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient method to estimate the radar cross section (RCS) mean and variance of a 2-D cylinder with random holes. This model has been applied extensively in microwave engineering, e.g., frequency selective surface (FSS). Firstly, we develop a deterministic RCS solver based on nodal Discontinuous Galerkin Finite Element Method (DG-FEM). Then we quantify the RCS mean and variance of a 2-D cylinder with random holes based on the stochastic collocation method. We use the Gauss-Patterson quadrature formula to solve the resulting stochastic equation. Numerical results show how the RCS in scattering is affected by the uncertainty in shape of the object.\",\"PeriodicalId\":280404,\"journal\":{\"name\":\"2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAPE.2009.5355570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPE.2009.5355570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient RCS estimation of 2-dimensional cylinder with random holes
In this paper, we propose an efficient method to estimate the radar cross section (RCS) mean and variance of a 2-D cylinder with random holes. This model has been applied extensively in microwave engineering, e.g., frequency selective surface (FSS). Firstly, we develop a deterministic RCS solver based on nodal Discontinuous Galerkin Finite Element Method (DG-FEM). Then we quantify the RCS mean and variance of a 2-D cylinder with random holes based on the stochastic collocation method. We use the Gauss-Patterson quadrature formula to solve the resulting stochastic equation. Numerical results show how the RCS in scattering is affected by the uncertainty in shape of the object.