主动学习阿拉伯语文本分类

Abdel-Karim Al-Tamimi, Esraa Bani-Isaa, Ahmed Al-Alami
{"title":"主动学习阿拉伯语文本分类","authors":"Abdel-Karim Al-Tamimi, Esraa Bani-Isaa, Ahmed Al-Alami","doi":"10.1109/ICCIKE51210.2021.9410758","DOIUrl":null,"url":null,"abstract":"Active Learning explores the use of minimal human intervention to improve the efficiency of supervised machine learning algorithms during the learning/training phase. Active learning improves machine learning algorithms performance, especially for ambiguous or unknown cases that are not clearly defined in the classification criteria applied to data. In machine learning, the quality of used data greatly determines the quality of the classification task outcomes. Especially with the current abundance of data resources, the data labeling process represents a major hurdle to data classification. In this paper, we share our results of using active learning approach for Arabic text classification. We demonstrate in this work how active learning approach greatly improves the efficiency of machine learning systems when compared to traditional passive learning approaches. This work introduces our preliminary results of using active learning approach to help annotate the ever-growing Arabic data corpora using state-of-the-art learning techniques.","PeriodicalId":254711,"journal":{"name":"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Active Learning for Arabic Text Classification\",\"authors\":\"Abdel-Karim Al-Tamimi, Esraa Bani-Isaa, Ahmed Al-Alami\",\"doi\":\"10.1109/ICCIKE51210.2021.9410758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active Learning explores the use of minimal human intervention to improve the efficiency of supervised machine learning algorithms during the learning/training phase. Active learning improves machine learning algorithms performance, especially for ambiguous or unknown cases that are not clearly defined in the classification criteria applied to data. In machine learning, the quality of used data greatly determines the quality of the classification task outcomes. Especially with the current abundance of data resources, the data labeling process represents a major hurdle to data classification. In this paper, we share our results of using active learning approach for Arabic text classification. We demonstrate in this work how active learning approach greatly improves the efficiency of machine learning systems when compared to traditional passive learning approaches. This work introduces our preliminary results of using active learning approach to help annotate the ever-growing Arabic data corpora using state-of-the-art learning techniques.\",\"PeriodicalId\":254711,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIKE51210.2021.9410758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIKE51210.2021.9410758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

主动学习探索在学习/训练阶段使用最少的人为干预来提高监督机器学习算法的效率。主动学习提高了机器学习算法的性能,特别是对于应用于数据的分类标准中没有明确定义的模糊或未知情况。在机器学习中,使用数据的质量在很大程度上决定了分类任务结果的质量。特别是在当前数据资源丰富的情况下,数据标记过程是数据分类的主要障碍。在本文中,我们分享了我们使用主动学习方法进行阿拉伯语文本分类的结果。在这项工作中,我们证明了与传统的被动学习方法相比,主动学习方法如何极大地提高了机器学习系统的效率。这项工作介绍了我们使用主动学习方法的初步结果,以帮助使用最先进的学习技术注释不断增长的阿拉伯语数据语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning for Arabic Text Classification
Active Learning explores the use of minimal human intervention to improve the efficiency of supervised machine learning algorithms during the learning/training phase. Active learning improves machine learning algorithms performance, especially for ambiguous or unknown cases that are not clearly defined in the classification criteria applied to data. In machine learning, the quality of used data greatly determines the quality of the classification task outcomes. Especially with the current abundance of data resources, the data labeling process represents a major hurdle to data classification. In this paper, we share our results of using active learning approach for Arabic text classification. We demonstrate in this work how active learning approach greatly improves the efficiency of machine learning systems when compared to traditional passive learning approaches. This work introduces our preliminary results of using active learning approach to help annotate the ever-growing Arabic data corpora using state-of-the-art learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信