{"title":"基于cnn的神经声码器语音去噪比较","authors":"Chanjun Chun, Kwang Myung Jeon, Chaejun Leem, Bumshik Lee, Wooyeol Choi","doi":"10.1109/ICAIIC51459.2021.9415259","DOIUrl":null,"url":null,"abstract":"Reverberation degrades the speech quality and intelligibility, particularly for hearing impaired people. In an automatic speech recognition (ASR) system, a dereverberation technique, which removes reverberation, is widely employed as a pre-processing to increase the performance of the ASR system. In this paper, we compare the performance of the CNN-based dereverberation method by applying various vocoders. The U-Net architecture is employed as the dereverberation technique. WaveGlow, MelGAN, and Griffin Lim are used as vocoders. Such vocoders play a role in converting speech features into speech samples in time domain, and are capable of generating high-quality speech from mel-spectrograms. In order to compare the results, PESQ was measured. As a result, it was confirmed that PESQ was higher than that of the reverberant speech when speech was synthesized with the reverberation removal and vocoder.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of CNN-based Speech Dereverberation using Neural Vocoder\",\"authors\":\"Chanjun Chun, Kwang Myung Jeon, Chaejun Leem, Bumshik Lee, Wooyeol Choi\",\"doi\":\"10.1109/ICAIIC51459.2021.9415259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverberation degrades the speech quality and intelligibility, particularly for hearing impaired people. In an automatic speech recognition (ASR) system, a dereverberation technique, which removes reverberation, is widely employed as a pre-processing to increase the performance of the ASR system. In this paper, we compare the performance of the CNN-based dereverberation method by applying various vocoders. The U-Net architecture is employed as the dereverberation technique. WaveGlow, MelGAN, and Griffin Lim are used as vocoders. Such vocoders play a role in converting speech features into speech samples in time domain, and are capable of generating high-quality speech from mel-spectrograms. In order to compare the results, PESQ was measured. As a result, it was confirmed that PESQ was higher than that of the reverberant speech when speech was synthesized with the reverberation removal and vocoder.\",\"PeriodicalId\":432977,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC51459.2021.9415259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of CNN-based Speech Dereverberation using Neural Vocoder
Reverberation degrades the speech quality and intelligibility, particularly for hearing impaired people. In an automatic speech recognition (ASR) system, a dereverberation technique, which removes reverberation, is widely employed as a pre-processing to increase the performance of the ASR system. In this paper, we compare the performance of the CNN-based dereverberation method by applying various vocoders. The U-Net architecture is employed as the dereverberation technique. WaveGlow, MelGAN, and Griffin Lim are used as vocoders. Such vocoders play a role in converting speech features into speech samples in time domain, and are capable of generating high-quality speech from mel-spectrograms. In order to compare the results, PESQ was measured. As a result, it was confirmed that PESQ was higher than that of the reverberant speech when speech was synthesized with the reverberation removal and vocoder.