弹道火箭跟踪:卡尔曼与αβγ滤波器

J. A. P. Abreu, J. V. F. Neto, R. C. L. Oliveira
{"title":"弹道火箭跟踪:卡尔曼与αβγ滤波器","authors":"J. A. P. Abreu, J. V. F. Neto, R. C. L. Oliveira","doi":"10.1109/UKSIM.2011.66","DOIUrl":null,"url":null,"abstract":"This article presents the problem of tracking ballistic rockets through the propelled and ballistic stages using measured radar signal processing. We developed a dynamic model of a moving target. We have compared the performance of the estimation through quadratic mean error of the αβγ and Kalman filters. The results show that the Kalman filter has a better performance, it combines the statistical efficiency with a modest computational effort. This conclusion is valid when the target's ballistic coefficient is known a priori.","PeriodicalId":161995,"journal":{"name":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ballistic Rockets Tracking: Kalman versus αβγ Filters\",\"authors\":\"J. A. P. Abreu, J. V. F. Neto, R. C. L. Oliveira\",\"doi\":\"10.1109/UKSIM.2011.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the problem of tracking ballistic rockets through the propelled and ballistic stages using measured radar signal processing. We developed a dynamic model of a moving target. We have compared the performance of the estimation through quadratic mean error of the αβγ and Kalman filters. The results show that the Kalman filter has a better performance, it combines the statistical efficiency with a modest computational effort. This conclusion is valid when the target's ballistic coefficient is known a priori.\",\"PeriodicalId\":161995,\"journal\":{\"name\":\"2011 UkSim 13th International Conference on Computer Modelling and Simulation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 UkSim 13th International Conference on Computer Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSIM.2011.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2011.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了利用实测雷达信号处理技术对弹道火箭推进段和弹道段进行跟踪的问题。我们开发了一个运动目标的动态模型。我们比较了αβγ和卡尔曼滤波器的二次平均误差估计性能。结果表明,卡尔曼滤波具有较好的性能,它结合了统计效率和适度的计算量。当目标的弹道系数已知时,这个结论是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ballistic Rockets Tracking: Kalman versus αβγ Filters
This article presents the problem of tracking ballistic rockets through the propelled and ballistic stages using measured radar signal processing. We developed a dynamic model of a moving target. We have compared the performance of the estimation through quadratic mean error of the αβγ and Kalman filters. The results show that the Kalman filter has a better performance, it combines the statistical efficiency with a modest computational effort. This conclusion is valid when the target's ballistic coefficient is known a priori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信