封闭序列模式的并行挖掘算法

Tian Zhu, Sixue Bai
{"title":"封闭序列模式的并行挖掘算法","authors":"Tian Zhu, Sixue Bai","doi":"10.1109/AINAW.2007.40","DOIUrl":null,"url":null,"abstract":"Mining closed sequential patterns is an important data mining task with broad applications, the large dataset acquires us to use the parallel technique to solve the problems in data mining. A new parallel algorithm named Par-ClosP is introduced in this paper. It partitions the task to each processor, reduces the communication among the processors, uses pseudo projection technique to minimize the use of time and space, and it introduces a new pruning method, thus improves the efficiency of the algorithm.","PeriodicalId":338799,"journal":{"name":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Parallel Mining Algorithm for Closed Sequential Patterns\",\"authors\":\"Tian Zhu, Sixue Bai\",\"doi\":\"10.1109/AINAW.2007.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining closed sequential patterns is an important data mining task with broad applications, the large dataset acquires us to use the parallel technique to solve the problems in data mining. A new parallel algorithm named Par-ClosP is introduced in this paper. It partitions the task to each processor, reduces the communication among the processors, uses pseudo projection technique to minimize the use of time and space, and it introduces a new pruning method, thus improves the efficiency of the algorithm.\",\"PeriodicalId\":338799,\"journal\":{\"name\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINAW.2007.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINAW.2007.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

封闭序列模式的挖掘是一项应用广泛的重要数据挖掘任务,庞大的数据集要求我们使用并行技术来解决数据挖掘中的问题。本文介绍了一种新的并行算法Par-ClosP。它将任务划分到每个处理器,减少处理器之间的通信,使用伪投影技术最小化时间和空间的使用,并引入了新的剪枝方法,从而提高了算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Mining Algorithm for Closed Sequential Patterns
Mining closed sequential patterns is an important data mining task with broad applications, the large dataset acquires us to use the parallel technique to solve the problems in data mining. A new parallel algorithm named Par-ClosP is introduced in this paper. It partitions the task to each processor, reduces the communication among the processors, uses pseudo projection technique to minimize the use of time and space, and it introduces a new pruning method, thus improves the efficiency of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信