{"title":"Perbandingan Levenshtein Distance Dan Jaro-Winkler Distance Untuk Koreksi Kata Dalam Preprocessing Analisis Sentimen Pengguna Twitter","authors":"M. Nur","doi":"10.33772/jfe.v6i2.17751","DOIUrl":null,"url":null,"abstract":"Pada analisis sentimen pengguna twitter dibutuhkan tahap preprocessing sebelum mengklasifikasikan sentimen. Preprocessing digunakan untuk menyaring kata yang dianggap perlu untuk kebutuhan klasifikasi. Kesalahan penulisan pada tweet merupakan suatu permasalahan dalam tahap preprocessing yang tentunya mempengaruhi tingkat akurasi klasifikasi. Berdasarkan hal tersebut dibutuhkan proses tambahan pada preprocessing untuk melakukan koreksi kesalahan penulisan kata. Pada penelitian ini, penulis membandingkan kinerja metode levenshtein distance dan jaro-winkler distance dalam melakukan koreksi kesalahan penulisan kata. Penelitian ini diawali dengan melakukan survei literatur untuk mengidentifikasi masalah. Selanjutnya melakukan studi pustaka untuk menentukan objek dan parameter yang dibutuhkan dalam merancang dan memodelkan data serta perangkat lunak. Perangkat lunak dikembangkan menggunakan bahasa pemrograman python dengan beberapa library sastrawi, levenshtein, pyjarowinkler dan sklearn. Perangkat lunak ini dibangun untuk memudahkan dalam melihat kinerja metode yang digunakan. Pengujian dilakukan menggunakan confusion matrix dengan 10 fold cross validation. Pengujian melibatkan pengukuran kinerja levenshtein distance jika ditempatkan sebelum dan sesudah proses stemming. Begitupula untuk metode jaro-winkler distance juga ditempatkan sebelum dan sesudah proses stemming dalam preprocessing. Dari hasil pengujian diperoleh nilai accuracy, recall dan f1score dari metode levenshtein distance lebih baik dibandingkan jaro-winkler distance. Penerapan koreksi kata dengan metode levenshtein distance juga meningkatkan accuracy, recall dan f1score jika dibandingkan tanpa koreksi kata pada preprocessing. Penempatan koreksi kata pada tahap preprocessing dari hasil pengujian menunjukan posisi setelah proses stemming lebih baik dari penempatan koreksi kata sebelum proses stemming","PeriodicalId":164637,"journal":{"name":"Jurnal Fokus Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Fokus Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33772/jfe.v6i2.17751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perbandingan Levenshtein Distance Dan Jaro-Winkler Distance Untuk Koreksi Kata Dalam Preprocessing Analisis Sentimen Pengguna Twitter
Pada analisis sentimen pengguna twitter dibutuhkan tahap preprocessing sebelum mengklasifikasikan sentimen. Preprocessing digunakan untuk menyaring kata yang dianggap perlu untuk kebutuhan klasifikasi. Kesalahan penulisan pada tweet merupakan suatu permasalahan dalam tahap preprocessing yang tentunya mempengaruhi tingkat akurasi klasifikasi. Berdasarkan hal tersebut dibutuhkan proses tambahan pada preprocessing untuk melakukan koreksi kesalahan penulisan kata. Pada penelitian ini, penulis membandingkan kinerja metode levenshtein distance dan jaro-winkler distance dalam melakukan koreksi kesalahan penulisan kata. Penelitian ini diawali dengan melakukan survei literatur untuk mengidentifikasi masalah. Selanjutnya melakukan studi pustaka untuk menentukan objek dan parameter yang dibutuhkan dalam merancang dan memodelkan data serta perangkat lunak. Perangkat lunak dikembangkan menggunakan bahasa pemrograman python dengan beberapa library sastrawi, levenshtein, pyjarowinkler dan sklearn. Perangkat lunak ini dibangun untuk memudahkan dalam melihat kinerja metode yang digunakan. Pengujian dilakukan menggunakan confusion matrix dengan 10 fold cross validation. Pengujian melibatkan pengukuran kinerja levenshtein distance jika ditempatkan sebelum dan sesudah proses stemming. Begitupula untuk metode jaro-winkler distance juga ditempatkan sebelum dan sesudah proses stemming dalam preprocessing. Dari hasil pengujian diperoleh nilai accuracy, recall dan f1score dari metode levenshtein distance lebih baik dibandingkan jaro-winkler distance. Penerapan koreksi kata dengan metode levenshtein distance juga meningkatkan accuracy, recall dan f1score jika dibandingkan tanpa koreksi kata pada preprocessing. Penempatan koreksi kata pada tahap preprocessing dari hasil pengujian menunjukan posisi setelah proses stemming lebih baik dari penempatan koreksi kata sebelum proses stemming