快速和鲁棒的半自动配准照片的三维几何

R. Pintus, E. Gobbetti, Roberto Combet
{"title":"快速和鲁棒的半自动配准照片的三维几何","authors":"R. Pintus, E. Gobbetti, Roberto Combet","doi":"10.2312/VAST/VAST11/009-016","DOIUrl":null,"url":null,"abstract":"We present a simple, fast and robust technique for semi-automatic 2D-3D registration capable to align a large set of unordered images to a massive point cloud with minimal human effort. Our method converts the hard to solve image-to-geometry registration problem in a Structure-from-Motion (SfM) plus a 3D-3D registration problem. We exploit a SfM framework that, starting just from the unordered image collection, computes an estimate of camera parameters and a sparse 3D geometry deriving from matched image features. We then coarsely register this model to the given 3D geometry by estimating a global scale and absolute orientation using minimal manual intervention. A specialized sparse bundle adjustment (SBA) step, exploiting the correspondence between the model deriving from image features and the fine input 3D geometry, is then used to refine intrinsic and extrinsic parameters of each camera. Output data is suitable for photo blending frameworks to produce seamless colored models. The effectiveness of the method is demonstrated on a series of real-world 3D/2D Cultural Heritage datasets.","PeriodicalId":168094,"journal":{"name":"IEEE Conference on Visual Analytics Science and Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Fast and Robust Semi-Automatic Registration of Photographs to 3D Geometry\",\"authors\":\"R. Pintus, E. Gobbetti, Roberto Combet\",\"doi\":\"10.2312/VAST/VAST11/009-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple, fast and robust technique for semi-automatic 2D-3D registration capable to align a large set of unordered images to a massive point cloud with minimal human effort. Our method converts the hard to solve image-to-geometry registration problem in a Structure-from-Motion (SfM) plus a 3D-3D registration problem. We exploit a SfM framework that, starting just from the unordered image collection, computes an estimate of camera parameters and a sparse 3D geometry deriving from matched image features. We then coarsely register this model to the given 3D geometry by estimating a global scale and absolute orientation using minimal manual intervention. A specialized sparse bundle adjustment (SBA) step, exploiting the correspondence between the model deriving from image features and the fine input 3D geometry, is then used to refine intrinsic and extrinsic parameters of each camera. Output data is suitable for photo blending frameworks to produce seamless colored models. The effectiveness of the method is demonstrated on a series of real-world 3D/2D Cultural Heritage datasets.\",\"PeriodicalId\":168094,\"journal\":{\"name\":\"IEEE Conference on Visual Analytics Science and Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VAST/VAST11/009-016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VAST/VAST11/009-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一种简单,快速和强大的半自动2D-3D配准技术,能够以最少的人力将大量无序图像对齐到大量点云。我们的方法将难以解决的图像-几何配准问题转化为结构-运动(SfM)加上3D-3D配准问题。我们利用一个SfM框架,从无序的图像收集开始,计算相机参数的估计和从匹配的图像特征派生的稀疏3D几何形状。然后,我们通过估计全局尺度和绝对方向,使用最小的人工干预,将该模型粗略地注册到给定的3D几何形状。一个专门的稀疏束调整(SBA)步骤,利用从图像特征导出的模型与精细输入的三维几何之间的对应关系,然后用于细化每个相机的内在和外在参数。输出数据适用于照片混合框架,以产生无缝的彩色模型。该方法的有效性在一系列现实世界的3D/2D文化遗产数据集上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Robust Semi-Automatic Registration of Photographs to 3D Geometry
We present a simple, fast and robust technique for semi-automatic 2D-3D registration capable to align a large set of unordered images to a massive point cloud with minimal human effort. Our method converts the hard to solve image-to-geometry registration problem in a Structure-from-Motion (SfM) plus a 3D-3D registration problem. We exploit a SfM framework that, starting just from the unordered image collection, computes an estimate of camera parameters and a sparse 3D geometry deriving from matched image features. We then coarsely register this model to the given 3D geometry by estimating a global scale and absolute orientation using minimal manual intervention. A specialized sparse bundle adjustment (SBA) step, exploiting the correspondence between the model deriving from image features and the fine input 3D geometry, is then used to refine intrinsic and extrinsic parameters of each camera. Output data is suitable for photo blending frameworks to produce seamless colored models. The effectiveness of the method is demonstrated on a series of real-world 3D/2D Cultural Heritage datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信