一种自动确定文本分类特征向量大小的方法

Rogerio C. P. Fragoso, Roberto H. W. Pinheiro, George D. C. Cavalcanti
{"title":"一种自动确定文本分类特征向量大小的方法","authors":"Rogerio C. P. Fragoso, Roberto H. W. Pinheiro, George D. C. Cavalcanti","doi":"10.1109/BRACIS.2016.055","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature selection method for text categorization based on the filtering approach named Automatic Feature Subsets Analyzer (AFSA). The AFSA extends the Class-dependent Maximum Features per Document (cMFDR) algorithm and automatically defines the best number of features per document. In the cMFDR algorithm, the number of features is selected after a repetitive application of the methods which is a time-consuming strategy. In contrast, AFSA finds the best number of features in a data-driven way which is faster than cMFDR. The experiments with the Naïve Bayes Multinomial classifier, using four benchmark datasets, and three Feature Evaluation Function showed that the AFSA outperforms or presents similar results when compared with the cMFDR.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Method for Automatic Determination of the Feature Vector Size for Text Categorization\",\"authors\":\"Rogerio C. P. Fragoso, Roberto H. W. Pinheiro, George D. C. Cavalcanti\",\"doi\":\"10.1109/BRACIS.2016.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a feature selection method for text categorization based on the filtering approach named Automatic Feature Subsets Analyzer (AFSA). The AFSA extends the Class-dependent Maximum Features per Document (cMFDR) algorithm and automatically defines the best number of features per document. In the cMFDR algorithm, the number of features is selected after a repetitive application of the methods which is a time-consuming strategy. In contrast, AFSA finds the best number of features in a data-driven way which is faster than cMFDR. The experiments with the Naïve Bayes Multinomial classifier, using four benchmark datasets, and three Feature Evaluation Function showed that the AFSA outperforms or presents similar results when compared with the cMFDR.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于过滤方法的文本分类特征选择方法——自动特征子集分析器(AFSA)。AFSA扩展了类相关的每个文档最大特征(cMFDR)算法,并自动定义每个文档的最佳特征数量。在cMFDR算法中,特征的数量是在方法的重复应用后选择的,这是一个耗时的策略。相比之下,AFSA以数据驱动的方式找到最佳数量的特征,这比cMFDR更快。使用Naïve Bayes多项分类器,使用4个基准数据集和3个特征评价函数进行的实验表明,AFSA与cMFDR相比优于或具有相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Automatic Determination of the Feature Vector Size for Text Categorization
In this paper, we propose a feature selection method for text categorization based on the filtering approach named Automatic Feature Subsets Analyzer (AFSA). The AFSA extends the Class-dependent Maximum Features per Document (cMFDR) algorithm and automatically defines the best number of features per document. In the cMFDR algorithm, the number of features is selected after a repetitive application of the methods which is a time-consuming strategy. In contrast, AFSA finds the best number of features in a data-driven way which is faster than cMFDR. The experiments with the Naïve Bayes Multinomial classifier, using four benchmark datasets, and three Feature Evaluation Function showed that the AFSA outperforms or presents similar results when compared with the cMFDR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信