基于互联网的黑色素瘤诊断系统——走向实际应用

H. Iyatomi, H. Oka, M. Hashimoto, Masaru Tanaka, K. Ogawa
{"title":"基于互联网的黑色素瘤诊断系统——走向实际应用","authors":"H. Iyatomi, H. Oka, M. Hashimoto, Masaru Tanaka, K. Ogawa","doi":"10.1109/CIBCB.2005.1594952","DOIUrl":null,"url":null,"abstract":"In this paper, we report a practical application of world’s first internet-based melanoma diagnostic system. The system is now available from all over the world, 24 hours 365 days. As key components of this system, we developed a new dermatologist-like tumor area extraction algorithm and an artificial neural network (ANN) classifier. Our dermatologist-like tumor area extraction algorithm achieved superior extraction performance and the ANN classifier achieved classification accuracy of 97.3% in sensitivity and 86.1% in specificity with leave-one-out cross-validation test of 319 dermoscopy images. Our system supported SSL encrypted transaction and required only several seconds to complete a procedure. On the other hand, we developed portable skin camera as the alternative of dermoscopy and started field-application tests by distributing them for hospitals or medical universities at first setout for making the system into practical use.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Internet-based Melanoma Diagnostic System - Toward the Practical Application -\",\"authors\":\"H. Iyatomi, H. Oka, M. Hashimoto, Masaru Tanaka, K. Ogawa\",\"doi\":\"10.1109/CIBCB.2005.1594952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a practical application of world’s first internet-based melanoma diagnostic system. The system is now available from all over the world, 24 hours 365 days. As key components of this system, we developed a new dermatologist-like tumor area extraction algorithm and an artificial neural network (ANN) classifier. Our dermatologist-like tumor area extraction algorithm achieved superior extraction performance and the ANN classifier achieved classification accuracy of 97.3% in sensitivity and 86.1% in specificity with leave-one-out cross-validation test of 319 dermoscopy images. Our system supported SSL encrypted transaction and required only several seconds to complete a procedure. On the other hand, we developed portable skin camera as the alternative of dermoscopy and started field-application tests by distributing them for hospitals or medical universities at first setout for making the system into practical use.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们报告了世界上第一个基于互联网的黑色素瘤诊断系统的实际应用。该系统现在可以在世界各地使用,365天24小时。作为该系统的关键组成部分,我们开发了一种新的类皮肤科肿瘤区域提取算法和人工神经网络(ANN)分类器。通过对319张皮肤镜图像的留一交叉验证检验,我们的类皮肤科肿瘤区域提取算法取得了优异的提取性能,ANN分类器的分类准确率达到了97.3%的灵敏度和86.1%的特异性。我们的系统支持SSL加密交易,只需要几秒钟就可以完成一个过程。另一方面,我们开发了便携式皮肤相机作为皮肤镜的替代品,并开始进行现场应用测试,首先在医院或医科大学分发,以使系统投入实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Internet-based Melanoma Diagnostic System - Toward the Practical Application -
In this paper, we report a practical application of world’s first internet-based melanoma diagnostic system. The system is now available from all over the world, 24 hours 365 days. As key components of this system, we developed a new dermatologist-like tumor area extraction algorithm and an artificial neural network (ANN) classifier. Our dermatologist-like tumor area extraction algorithm achieved superior extraction performance and the ANN classifier achieved classification accuracy of 97.3% in sensitivity and 86.1% in specificity with leave-one-out cross-validation test of 319 dermoscopy images. Our system supported SSL encrypted transaction and required only several seconds to complete a procedure. On the other hand, we developed portable skin camera as the alternative of dermoscopy and started field-application tests by distributing them for hospitals or medical universities at first setout for making the system into practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信