基于递归神经网络LSTM结构的股票市场预测

Koushik Sutradhar, Sourav Sutradhar, Iqbal Ahmed Jhimel, S. Gupta, Mohammad Monirujjaman Khan
{"title":"基于递归神经网络LSTM结构的股票市场预测","authors":"Koushik Sutradhar, Sourav Sutradhar, Iqbal Ahmed Jhimel, S. Gupta, Mohammad Monirujjaman Khan","doi":"10.1109/uemcon53757.2021.9666562","DOIUrl":null,"url":null,"abstract":"Stock market price prediction is a difficult undertaking that generally requires a lot of human-computer interaction. The stock market process is fraught with risk and is influenced by a variety of factors. Of all the market sectors, it is one of the most volatile and active. When buying and selling stocks from various corporations and businesses, more caution is required. As a result, stock market forecasting is an important endeavor in business and finance. This study analyzes one of the explicit forecasting tactics based on Machine Learning architectures and predictive algorithms and gives an independent model-based strategy for predicting stock prices. The predictor model is based on the Recurrent Neural Networks' LSTM (Long Short-Term Memory) architecture, which specializes in time series data classification and prediction. This model does rigorous mathematical analysis and estimates RMSE to improve forecast accuracy (Root Mean Square Error).All calculations and performance checks are done in Python 3. A number of machine learning libraries are used for prediction and visualization. This study demonstrates that stock performance, sentiment, and social data are all closely related to recent historical data, and it establishes a framework and predicts trading pattern linkages that are suited for High Frequency Stock Trading based on preset parameters using Machine Learning.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stock Market Prediction using Recurrent Neural Network’s LSTM Architecture\",\"authors\":\"Koushik Sutradhar, Sourav Sutradhar, Iqbal Ahmed Jhimel, S. Gupta, Mohammad Monirujjaman Khan\",\"doi\":\"10.1109/uemcon53757.2021.9666562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock market price prediction is a difficult undertaking that generally requires a lot of human-computer interaction. The stock market process is fraught with risk and is influenced by a variety of factors. Of all the market sectors, it is one of the most volatile and active. When buying and selling stocks from various corporations and businesses, more caution is required. As a result, stock market forecasting is an important endeavor in business and finance. This study analyzes one of the explicit forecasting tactics based on Machine Learning architectures and predictive algorithms and gives an independent model-based strategy for predicting stock prices. The predictor model is based on the Recurrent Neural Networks' LSTM (Long Short-Term Memory) architecture, which specializes in time series data classification and prediction. This model does rigorous mathematical analysis and estimates RMSE to improve forecast accuracy (Root Mean Square Error).All calculations and performance checks are done in Python 3. A number of machine learning libraries are used for prediction and visualization. This study demonstrates that stock performance, sentiment, and social data are all closely related to recent historical data, and it establishes a framework and predicts trading pattern linkages that are suited for High Frequency Stock Trading based on preset parameters using Machine Learning.\",\"PeriodicalId\":127072,\"journal\":{\"name\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/uemcon53757.2021.9666562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

股票市场价格预测是一项困难的工作,通常需要大量的人机交互。股票市场过程充满风险,并受多种因素的影响。在所有的市场部门中,它是最不稳定和最活跃的部门之一。在买卖不同公司和企业的股票时,需要更加谨慎。因此,股票市场预测是商业和金融领域的一项重要工作。本研究分析了一种基于机器学习架构和预测算法的显式预测策略,并给出了一种独立的基于模型的股票价格预测策略。预测模型基于循环神经网络的LSTM (Long - Short-Term Memory,长短期记忆)架构,该架构专门用于时间序列数据的分类和预测。该模型进行了严格的数学分析,并估计RMSE以提高预测精度(均方根误差)。所有的计算和性能检查都在Python 3中完成。许多机器学习库用于预测和可视化。本研究表明,股票表现、情绪和社会数据都与最近的历史数据密切相关,并基于机器学习的预设参数建立了一个框架,并预测了适合高频股票交易的交易模式联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Market Prediction using Recurrent Neural Network’s LSTM Architecture
Stock market price prediction is a difficult undertaking that generally requires a lot of human-computer interaction. The stock market process is fraught with risk and is influenced by a variety of factors. Of all the market sectors, it is one of the most volatile and active. When buying and selling stocks from various corporations and businesses, more caution is required. As a result, stock market forecasting is an important endeavor in business and finance. This study analyzes one of the explicit forecasting tactics based on Machine Learning architectures and predictive algorithms and gives an independent model-based strategy for predicting stock prices. The predictor model is based on the Recurrent Neural Networks' LSTM (Long Short-Term Memory) architecture, which specializes in time series data classification and prediction. This model does rigorous mathematical analysis and estimates RMSE to improve forecast accuracy (Root Mean Square Error).All calculations and performance checks are done in Python 3. A number of machine learning libraries are used for prediction and visualization. This study demonstrates that stock performance, sentiment, and social data are all closely related to recent historical data, and it establishes a framework and predicts trading pattern linkages that are suited for High Frequency Stock Trading based on preset parameters using Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信