基于FPGA的神经尖峰数字检测器/排序

E. Vallicelli, M. Matteis, A. Baschirotto, Michael Rescati, Marco Reato, M. Maschietto, S. Vassanelli, D. Guarrera, G. Collazuol, R. Zeiter
{"title":"基于FPGA的神经尖峰数字检测器/排序","authors":"E. Vallicelli, M. Matteis, A. Baschirotto, Michael Rescati, Marco Reato, M. Maschietto, S. Vassanelli, D. Guarrera, G. Collazuol, R. Zeiter","doi":"10.1109/BIOCAS.2017.8325077","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a multidisciplinary experiment where the electrical activity of a rat hippocampus cultured neurons population has been detected and mapped by an advanced FPGA spike-sorting algorithm. Neurons are growth over a silicon chip that is thus capacitively coupled with neuronal cells. Due to noise power coming from bio-silicon interface and analog electronics signal processing, the Action Potentials detection intrinsically needs advanced noise rejection algorithms which are often software/off-line implemented. This approach disables instantaneous detection of neural spikes and cannot be obviously used for real-time electrical stimulation. In this scenario, this paper presents a proper FPGA system able to separate relevant neuronal cells potentials from noise. The FPGA output signals provide real time spatial mapping of biosensor electrical activity, noise and synchronous neural network activity.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural spikes digital detector/sorting on FPGA\",\"authors\":\"E. Vallicelli, M. Matteis, A. Baschirotto, Michael Rescati, Marco Reato, M. Maschietto, S. Vassanelli, D. Guarrera, G. Collazuol, R. Zeiter\",\"doi\":\"10.1109/BIOCAS.2017.8325077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of a multidisciplinary experiment where the electrical activity of a rat hippocampus cultured neurons population has been detected and mapped by an advanced FPGA spike-sorting algorithm. Neurons are growth over a silicon chip that is thus capacitively coupled with neuronal cells. Due to noise power coming from bio-silicon interface and analog electronics signal processing, the Action Potentials detection intrinsically needs advanced noise rejection algorithms which are often software/off-line implemented. This approach disables instantaneous detection of neural spikes and cannot be obviously used for real-time electrical stimulation. In this scenario, this paper presents a proper FPGA system able to separate relevant neuronal cells potentials from noise. The FPGA output signals provide real time spatial mapping of biosensor electrical activity, noise and synchronous neural network activity.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一项多学科实验的结果,该实验利用先进的FPGA尖峰排序算法检测和绘制了大鼠海马培养神经元群的电活动。神经元生长在硅芯片上,因此与神经元细胞电容耦合。由于噪声功率来自生物硅接口和模拟电子信号处理,动作电位检测本质上需要先进的噪声抑制算法,这些算法通常是软件/离线实现的。这种方法不能瞬时检测神经尖峰,不能明显用于实时电刺激。在这种情况下,本文提出了一种合适的FPGA系统,能够从噪声中分离相关神经元细胞的电位。FPGA输出信号提供生物传感器电活动、噪声和同步神经网络活动的实时空间映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural spikes digital detector/sorting on FPGA
This paper presents the results of a multidisciplinary experiment where the electrical activity of a rat hippocampus cultured neurons population has been detected and mapped by an advanced FPGA spike-sorting algorithm. Neurons are growth over a silicon chip that is thus capacitively coupled with neuronal cells. Due to noise power coming from bio-silicon interface and analog electronics signal processing, the Action Potentials detection intrinsically needs advanced noise rejection algorithms which are often software/off-line implemented. This approach disables instantaneous detection of neural spikes and cannot be obviously used for real-time electrical stimulation. In this scenario, this paper presents a proper FPGA system able to separate relevant neuronal cells potentials from noise. The FPGA output signals provide real time spatial mapping of biosensor electrical activity, noise and synchronous neural network activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信