多变量进程的开源系统识别包

Giuseppe Armenise, Marco Vaccari, Riccardo Bacci di Capaci, G. Pannocchia
{"title":"多变量进程的开源系统识别包","authors":"Giuseppe Armenise, Marco Vaccari, Riccardo Bacci di Capaci, G. Pannocchia","doi":"10.1109/CONTROL.2018.8516791","DOIUrl":null,"url":null,"abstract":"We present in this paper an open-source System Identification Package for PYthon (SIPPY 1), which implements different methods to identify linear discrete-time multi-input multi-output systems, in input-output transfer function or state space form. For input-output transfer function models, identification is performed using least-squares regression (FIR and ARX models) or recursive least-squares (ARMAX model). For state space models, various subspace identification algorithms are implemented according to traditional methods (N4SID, MOESP, and CVA) and to parsimonious methods which enforce causal projections. When the model order is not known a priori, three different information criteria can help the user in the choice of the most appropriate order. Many identification and validation tests have been performed on simulation data collected both in open-loop and closed-loop mode. Results show effectiveness and computational efficiency of SIPPY also in comparison with state-of-art proprietary system identification software.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An Open-Source System Identification Package for Multivariable Processes\",\"authors\":\"Giuseppe Armenise, Marco Vaccari, Riccardo Bacci di Capaci, G. Pannocchia\",\"doi\":\"10.1109/CONTROL.2018.8516791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper an open-source System Identification Package for PYthon (SIPPY 1), which implements different methods to identify linear discrete-time multi-input multi-output systems, in input-output transfer function or state space form. For input-output transfer function models, identification is performed using least-squares regression (FIR and ARX models) or recursive least-squares (ARMAX model). For state space models, various subspace identification algorithms are implemented according to traditional methods (N4SID, MOESP, and CVA) and to parsimonious methods which enforce causal projections. When the model order is not known a priori, three different information criteria can help the user in the choice of the most appropriate order. Many identification and validation tests have been performed on simulation data collected both in open-loop and closed-loop mode. Results show effectiveness and computational efficiency of SIPPY also in comparison with state-of-art proprietary system identification software.\",\"PeriodicalId\":266112,\"journal\":{\"name\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONTROL.2018.8516791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们提出了一个开源的PYthon系统识别包(SIPPY 1),它实现了不同的方法来识别线性离散时间多输入多输出系统,以输入输出传递函数或状态空间形式。对于输入-输出传递函数模型,使用最小二乘回归(FIR和ARX模型)或递归最小二乘(ARMAX模型)进行识别。对于状态空间模型,各种子空间识别算法根据传统方法(N4SID、MOESP和CVA)和执行因果投影的简约方法实现。当模型顺序先验未知时,三种不同的信息标准可以帮助用户选择最合适的顺序。对在开环和闭环模式下收集的仿真数据进行了许多识别和验证试验。结果表明了SIPPY的有效性和计算效率,并与目前最先进的专有系统识别软件进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Open-Source System Identification Package for Multivariable Processes
We present in this paper an open-source System Identification Package for PYthon (SIPPY 1), which implements different methods to identify linear discrete-time multi-input multi-output systems, in input-output transfer function or state space form. For input-output transfer function models, identification is performed using least-squares regression (FIR and ARX models) or recursive least-squares (ARMAX model). For state space models, various subspace identification algorithms are implemented according to traditional methods (N4SID, MOESP, and CVA) and to parsimonious methods which enforce causal projections. When the model order is not known a priori, three different information criteria can help the user in the choice of the most appropriate order. Many identification and validation tests have been performed on simulation data collected both in open-loop and closed-loop mode. Results show effectiveness and computational efficiency of SIPPY also in comparison with state-of-art proprietary system identification software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信