{"title":"近似检测重复流数据使用稳定的布隆过滤器","authors":"Fan Deng, Davood Rafiei","doi":"10.1145/1142473.1142477","DOIUrl":null,"url":null,"abstract":"Traditional duplicate elimination techniques are not applicable to many data stream applications. In general, precisely eliminating duplicates in an unbounded data stream is not feasible in many streaming scenarios. Therefore, we target at approximately eliminating duplicates in streaming environments given a limited space. Based on a well-known bitmap sketch, we introduce a data structure, Stable Bloom Filter, and a novel and simple algorithm. The basic idea is as follows: since there is no way to store the whole history of the stream, SBF continuously evicts the stale information so that SBF has room for those more recent elements. After finding some properties of SBF analytically, we show that a tight upper bound of false positive rates is guaranteed. In our empirical study, we compare SBF to alternative methods. The results show that our method is superior in terms of both accuracy and time effciency when a fixed small space and an acceptable false positive rate are given.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":"{\"title\":\"Approximately detecting duplicates for streaming data using stable bloom filters\",\"authors\":\"Fan Deng, Davood Rafiei\",\"doi\":\"10.1145/1142473.1142477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional duplicate elimination techniques are not applicable to many data stream applications. In general, precisely eliminating duplicates in an unbounded data stream is not feasible in many streaming scenarios. Therefore, we target at approximately eliminating duplicates in streaming environments given a limited space. Based on a well-known bitmap sketch, we introduce a data structure, Stable Bloom Filter, and a novel and simple algorithm. The basic idea is as follows: since there is no way to store the whole history of the stream, SBF continuously evicts the stale information so that SBF has room for those more recent elements. After finding some properties of SBF analytically, we show that a tight upper bound of false positive rates is guaranteed. In our empirical study, we compare SBF to alternative methods. The results show that our method is superior in terms of both accuracy and time effciency when a fixed small space and an acceptable false positive rate are given.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximately detecting duplicates for streaming data using stable bloom filters
Traditional duplicate elimination techniques are not applicable to many data stream applications. In general, precisely eliminating duplicates in an unbounded data stream is not feasible in many streaming scenarios. Therefore, we target at approximately eliminating duplicates in streaming environments given a limited space. Based on a well-known bitmap sketch, we introduce a data structure, Stable Bloom Filter, and a novel and simple algorithm. The basic idea is as follows: since there is no way to store the whole history of the stream, SBF continuously evicts the stale information so that SBF has room for those more recent elements. After finding some properties of SBF analytically, we show that a tight upper bound of false positive rates is guaranteed. In our empirical study, we compare SBF to alternative methods. The results show that our method is superior in terms of both accuracy and time effciency when a fixed small space and an acceptable false positive rate are given.