基于nhpp的软件可靠性模型区间估计变分贝叶斯方法

H. Okamura, Michael Grottke, T. Dohi, Kishor S. Trivedi
{"title":"基于nhpp的软件可靠性模型区间估计变分贝叶斯方法","authors":"H. Okamura, Michael Grottke, T. Dohi, Kishor S. Trivedi","doi":"10.1109/DSN.2007.101","DOIUrl":null,"url":null,"abstract":"In this paper, we present a variational Bayesian (VB) approach to computing the interval estimates for nonhomogeneous Poisson process (NHPP) software reliability models. This approach is an approximate method that can produce analytically tractable posterior distributions. We present simple iterative algorithms to compute the approximate posterior distributions for the parameters of the gamma-type NHPP-based software reliability model using either individual failure time data or grouped data. In numerical examples, the accuracy of this VB approach is compared with the interval estimates based on conventional Bayesian approaches, i.e., Laplace approximation, Markov chain Monte Carlo (MCMC) method, and numerical integration. The proposed VB approach provides almost the same accuracy as MCMC, while its computational burden is much lower.","PeriodicalId":405751,"journal":{"name":"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Variational Bayesian Approach for Interval Estimation of NHPP-Based Software Reliability Models\",\"authors\":\"H. Okamura, Michael Grottke, T. Dohi, Kishor S. Trivedi\",\"doi\":\"10.1109/DSN.2007.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a variational Bayesian (VB) approach to computing the interval estimates for nonhomogeneous Poisson process (NHPP) software reliability models. This approach is an approximate method that can produce analytically tractable posterior distributions. We present simple iterative algorithms to compute the approximate posterior distributions for the parameters of the gamma-type NHPP-based software reliability model using either individual failure time data or grouped data. In numerical examples, the accuracy of this VB approach is compared with the interval estimates based on conventional Bayesian approaches, i.e., Laplace approximation, Markov chain Monte Carlo (MCMC) method, and numerical integration. The proposed VB approach provides almost the same accuracy as MCMC, while its computational burden is much lower.\",\"PeriodicalId\":405751,\"journal\":{\"name\":\"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2007.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2007.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种计算非齐次泊松过程(NHPP)软件可靠性模型的区间估计的变分贝叶斯方法。这种方法是一种近似方法,可以产生可分析处理的后验分布。我们提出了简单的迭代算法来计算伽马型基于nhpp的软件可靠性模型参数的近似后验分布,使用单个故障时间数据或分组数据。通过数值算例,比较了VB方法与基于传统贝叶斯方法的区间估计的精度,即拉普拉斯近似、马尔可夫链蒙特卡罗(MCMC)方法和数值积分。所提出的VB方法提供了与MCMC几乎相同的精度,而其计算负担要低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Bayesian Approach for Interval Estimation of NHPP-Based Software Reliability Models
In this paper, we present a variational Bayesian (VB) approach to computing the interval estimates for nonhomogeneous Poisson process (NHPP) software reliability models. This approach is an approximate method that can produce analytically tractable posterior distributions. We present simple iterative algorithms to compute the approximate posterior distributions for the parameters of the gamma-type NHPP-based software reliability model using either individual failure time data or grouped data. In numerical examples, the accuracy of this VB approach is compared with the interval estimates based on conventional Bayesian approaches, i.e., Laplace approximation, Markov chain Monte Carlo (MCMC) method, and numerical integration. The proposed VB approach provides almost the same accuracy as MCMC, while its computational burden is much lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信