基于hog的嵌入式人体检测系统协同进化逼近

Michal Wiglasz, L. Sekanina
{"title":"基于hog的嵌入式人体检测系统协同进化逼近","authors":"Michal Wiglasz, L. Sekanina","doi":"10.1109/SSCI.2018.8628910","DOIUrl":null,"url":null,"abstract":"The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used cooperative coevolutionary Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan and square root functions, which are typically employed to compute the gradient orientations and magnitudes. When the best evolved approximations are integrated into the software implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with approximations evolved separately using CGP and also compared to the state-of-the art approximate implementations. As the evolved code does not contain any loops and branches, it is suitable for the follow-up low-power hardware implementation.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cooperative Coevolutionary Approximation in HOG-based Human Detection Embedded System\",\"authors\":\"Michal Wiglasz, L. Sekanina\",\"doi\":\"10.1109/SSCI.2018.8628910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used cooperative coevolutionary Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan and square root functions, which are typically employed to compute the gradient orientations and magnitudes. When the best evolved approximations are integrated into the software implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with approximations evolved separately using CGP and also compared to the state-of-the art approximate implementations. As the evolved code does not contain any loops and branches, it is suitable for the follow-up low-power hardware implementation.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

直方图定向梯度(HOG)特征提取是一种广泛应用于嵌入式系统中检测行人等物体的计算机视觉方法。我们利用协同进化笛卡尔遗传规划(CGP)来开发HOG算法的错误恢复能力。我们发展了新的arctan和平方根函数的近似实现,它们通常用于计算梯度方向和大小。当将最佳进化近似集成到HOG算法的软件实现中时,与使用CGP单独进化的近似和最先进的近似实现相比,不仅执行时间得到了改善,而且分类精度也得到了提高。由于改进后的代码不包含任何循环和分支,因此适合后续的低功耗硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Coevolutionary Approximation in HOG-based Human Detection Embedded System
The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used cooperative coevolutionary Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan and square root functions, which are typically employed to compute the gradient orientations and magnitudes. When the best evolved approximations are integrated into the software implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with approximations evolved separately using CGP and also compared to the state-of-the art approximate implementations. As the evolved code does not contain any loops and branches, it is suitable for the follow-up low-power hardware implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信