{"title":"线性与非线性系统的混合模糊控制","authors":"Y. Sun, M. Er","doi":"10.1109/ISIC.2001.971526","DOIUrl":null,"url":null,"abstract":"A hybrid fuzzy controller suitable for controlling both linear and nonlinear systems is proposed. The proposed controller, comprising a linear proportional integral derivative (PID) controller and a linear fuzzy logic controller, employs genetic algorithms to facilitate optimal tuning of the controller gains. A two-input dynamic linear fuzzy logic controller with linearly defined fuzzy space is developed to replace the conventional PI controller in the PID connective structure. Closed-form analysis shows that the proposed fuzzy logic controller is capable of generating nonlinear output by using varying gains and dynamic fuzzy rule base. Simulation results for a direct-current motor and a tactical missile model demonstrate that the proposed controller outperforms other existing controllers, is robust and has great potential in many other industrial applications.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hybrid fuzzy control of linear and nonlinear systems\",\"authors\":\"Y. Sun, M. Er\",\"doi\":\"10.1109/ISIC.2001.971526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid fuzzy controller suitable for controlling both linear and nonlinear systems is proposed. The proposed controller, comprising a linear proportional integral derivative (PID) controller and a linear fuzzy logic controller, employs genetic algorithms to facilitate optimal tuning of the controller gains. A two-input dynamic linear fuzzy logic controller with linearly defined fuzzy space is developed to replace the conventional PI controller in the PID connective structure. Closed-form analysis shows that the proposed fuzzy logic controller is capable of generating nonlinear output by using varying gains and dynamic fuzzy rule base. Simulation results for a direct-current motor and a tactical missile model demonstrate that the proposed controller outperforms other existing controllers, is robust and has great potential in many other industrial applications.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid fuzzy control of linear and nonlinear systems
A hybrid fuzzy controller suitable for controlling both linear and nonlinear systems is proposed. The proposed controller, comprising a linear proportional integral derivative (PID) controller and a linear fuzzy logic controller, employs genetic algorithms to facilitate optimal tuning of the controller gains. A two-input dynamic linear fuzzy logic controller with linearly defined fuzzy space is developed to replace the conventional PI controller in the PID connective structure. Closed-form analysis shows that the proposed fuzzy logic controller is capable of generating nonlinear output by using varying gains and dynamic fuzzy rule base. Simulation results for a direct-current motor and a tactical missile model demonstrate that the proposed controller outperforms other existing controllers, is robust and has great potential in many other industrial applications.