功能辅助直接视觉里程计与虚拟宽视场跟踪

Ruihang Miao, Peilin Liu, Fei Wen, Zheng Gong, Wuyang Xue, R. Ying
{"title":"功能辅助直接视觉里程计与虚拟宽视场跟踪","authors":"Ruihang Miao, Peilin Liu, Fei Wen, Zheng Gong, Wuyang Xue, R. Ying","doi":"10.1109/PLANS46316.2020.9110147","DOIUrl":null,"url":null,"abstract":"Visual odometry systems are usually categorized as feature-based visual odometry systems and direct visual odometry systems. The feature-based visual odometry systems spend time on calculating descriptors while direct visual odometry systems directly calculate residuals. The optimization of direct visual odometry systems is sensitive with initial states while feature-based visual odometry systems did not suffer from this problem. This paper presents a features assisted stereo direct visual odometry system with virtual wide field-of-view tracking. It combines the advantages of feature-based methods and direct methods. It is achieved by incorporating a feature assisted predicting module and a virtual wide field-of-view tracking module into stereo direct sparse odometry (SDSO) framework. The feature-based matching is combined in direct tracking module for efficient and robust data association. Furthermore, before data association, a virtual wide field-of-view inverse depth frame is created in case of tracking lost in aggressive rotating conditions. Evaluation results on the EuRoC datasets and the KITTI dataset show that, with the aid of the new tracking module, the stereo visual odometry becomes more robust and more accurate.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Assisted Direct Visual Odometry with Virtual Wide Field-of- View Tracking\",\"authors\":\"Ruihang Miao, Peilin Liu, Fei Wen, Zheng Gong, Wuyang Xue, R. Ying\",\"doi\":\"10.1109/PLANS46316.2020.9110147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual odometry systems are usually categorized as feature-based visual odometry systems and direct visual odometry systems. The feature-based visual odometry systems spend time on calculating descriptors while direct visual odometry systems directly calculate residuals. The optimization of direct visual odometry systems is sensitive with initial states while feature-based visual odometry systems did not suffer from this problem. This paper presents a features assisted stereo direct visual odometry system with virtual wide field-of-view tracking. It combines the advantages of feature-based methods and direct methods. It is achieved by incorporating a feature assisted predicting module and a virtual wide field-of-view tracking module into stereo direct sparse odometry (SDSO) framework. The feature-based matching is combined in direct tracking module for efficient and robust data association. Furthermore, before data association, a virtual wide field-of-view inverse depth frame is created in case of tracking lost in aggressive rotating conditions. Evaluation results on the EuRoC datasets and the KITTI dataset show that, with the aid of the new tracking module, the stereo visual odometry becomes more robust and more accurate.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9110147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9110147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉里程计系统通常分为基于特征的视觉里程计系统和直接视觉里程计系统。基于特征的视觉里程计系统花时间计算描述符,而直接视觉里程计系统直接计算残差。直接视觉里程计系统的优化对初始状态敏感,而基于特征的视觉里程计系统则不存在这一问题。提出了一种基于虚拟宽视场跟踪的特征辅助立体直接视觉里程计系统。它结合了基于特征的方法和直接方法的优点。通过将特征辅助预测模块和虚拟宽视场跟踪模块整合到立体直接稀疏里程计(SDSO)框架中来实现。在直接跟踪模块中结合基于特征的匹配,实现高效、鲁棒的数据关联。此外,在数据关联之前,如果在剧烈旋转条件下跟踪丢失,则创建虚拟宽视场反深度帧。在EuRoC数据集和KITTI数据集上的评估结果表明,在新跟踪模块的辅助下,立体视觉里程计具有更强的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Assisted Direct Visual Odometry with Virtual Wide Field-of- View Tracking
Visual odometry systems are usually categorized as feature-based visual odometry systems and direct visual odometry systems. The feature-based visual odometry systems spend time on calculating descriptors while direct visual odometry systems directly calculate residuals. The optimization of direct visual odometry systems is sensitive with initial states while feature-based visual odometry systems did not suffer from this problem. This paper presents a features assisted stereo direct visual odometry system with virtual wide field-of-view tracking. It combines the advantages of feature-based methods and direct methods. It is achieved by incorporating a feature assisted predicting module and a virtual wide field-of-view tracking module into stereo direct sparse odometry (SDSO) framework. The feature-based matching is combined in direct tracking module for efficient and robust data association. Furthermore, before data association, a virtual wide field-of-view inverse depth frame is created in case of tracking lost in aggressive rotating conditions. Evaluation results on the EuRoC datasets and the KITTI dataset show that, with the aid of the new tracking module, the stereo visual odometry becomes more robust and more accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信