分析美国海军信号处理系统的实时性

S. Goddard, K. Jeffay
{"title":"分析美国海军信号处理系统的实时性","authors":"S. Goddard, K. Jeffay","doi":"10.1109/HASE.1999.809489","DOIUrl":null,"url":null,"abstract":"The state of the art in verifying the real-time requirements of applications developed using general processing graph models relies on simulation or off-line scheduling. We extend the state of the art by presenting analytical methods that support the analysis of cyclic processing graphs executed with on-line schedulers. We show that it is possible to compute the latency inherent in a processing graph independent of the hardware hosting the application. We also show how to compute the real-time execution rate of each node in the graph. Using the execution rate of each node and the time it takes per execution on a given processor, the resulting CPU utilization can be computed as shown here for the Directed Low Frequency Analysis and Recording (DIFAR) acoustic signal processing application from the Airborne Low Frequency Sonar (ALFS) system of the SH-60B LAMPS MK III anti-submarine helicopter.","PeriodicalId":369187,"journal":{"name":"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analyzing the real-time properties of a U.S. Navy signal processing system\",\"authors\":\"S. Goddard, K. Jeffay\",\"doi\":\"10.1109/HASE.1999.809489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state of the art in verifying the real-time requirements of applications developed using general processing graph models relies on simulation or off-line scheduling. We extend the state of the art by presenting analytical methods that support the analysis of cyclic processing graphs executed with on-line schedulers. We show that it is possible to compute the latency inherent in a processing graph independent of the hardware hosting the application. We also show how to compute the real-time execution rate of each node in the graph. Using the execution rate of each node and the time it takes per execution on a given processor, the resulting CPU utilization can be computed as shown here for the Directed Low Frequency Analysis and Recording (DIFAR) acoustic signal processing application from the Airborne Low Frequency Sonar (ALFS) system of the SH-60B LAMPS MK III anti-submarine helicopter.\",\"PeriodicalId\":369187,\"journal\":{\"name\":\"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.1999.809489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.1999.809489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

验证使用通用处理图模型开发的应用程序的实时需求的最新技术依赖于仿真或离线调度。我们通过提供支持使用在线调度器执行的循环处理图的分析方法来扩展技术的状态。我们展示了独立于承载应用程序的硬件计算处理图中固有的延迟是可能的。我们还展示了如何计算图中每个节点的实时执行率。使用每个节点的执行率和在给定处理器上每次执行所需的时间,可以计算出由此产生的CPU利用率,如图所示,用于SH-60B“灯”MK III反潜直升机机载低频声纳(ALFS)系统的定向低频分析和记录(DIFAR)声学信号处理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the real-time properties of a U.S. Navy signal processing system
The state of the art in verifying the real-time requirements of applications developed using general processing graph models relies on simulation or off-line scheduling. We extend the state of the art by presenting analytical methods that support the analysis of cyclic processing graphs executed with on-line schedulers. We show that it is possible to compute the latency inherent in a processing graph independent of the hardware hosting the application. We also show how to compute the real-time execution rate of each node in the graph. Using the execution rate of each node and the time it takes per execution on a given processor, the resulting CPU utilization can be computed as shown here for the Directed Low Frequency Analysis and Recording (DIFAR) acoustic signal processing application from the Airborne Low Frequency Sonar (ALFS) system of the SH-60B LAMPS MK III anti-submarine helicopter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信