{"title":"一种用于topsar数据处理的精确保相图像形成算法","authors":"Wei Yang, Dalu Liu","doi":"10.1109/APSAR.2015.7306241","DOIUrl":null,"url":null,"abstract":"This paper concentrates on the image formation algorithm for TOP (Terrain Observation by Progressive Scans) mode data processing, which ensures both the quality of focusing and the phase accuracy. Based on the three-step processing schedule, the de-rotation operation is adopted to conquer the overlap in azimuth frequency domain, and the antenna sweep rate is discussed in tail. Moreover, the classic focusing kernel is applied for range and azimuth compressing. Furthermore, phase and compression-gain compensation function is given, which is implemented after deramp operation. Finally, the simulation results justify the effectiveness and precision of the proposed phase-preserving algorithm.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A pricise phase-preserving image formation algorithm for topsar data processing\",\"authors\":\"Wei Yang, Dalu Liu\",\"doi\":\"10.1109/APSAR.2015.7306241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on the image formation algorithm for TOP (Terrain Observation by Progressive Scans) mode data processing, which ensures both the quality of focusing and the phase accuracy. Based on the three-step processing schedule, the de-rotation operation is adopted to conquer the overlap in azimuth frequency domain, and the antenna sweep rate is discussed in tail. Moreover, the classic focusing kernel is applied for range and azimuth compressing. Furthermore, phase and compression-gain compensation function is given, which is implemented after deramp operation. Finally, the simulation results justify the effectiveness and precision of the proposed phase-preserving algorithm.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文重点研究了TOP (Terrain Observation by Progressive Scans)模式数据处理的成像算法,该算法既保证了对焦质量,又保证了相位精度。基于三步处理计划,在方位角频域采用去旋转操作克服重叠,并在尾端讨论天线扫描速率。此外,采用经典的聚焦核进行距离和方位压缩。此外,还给出了相位和压缩增益补偿函数,该函数在脱放后实现。最后,仿真结果验证了所提保相算法的有效性和精度。
A pricise phase-preserving image formation algorithm for topsar data processing
This paper concentrates on the image formation algorithm for TOP (Terrain Observation by Progressive Scans) mode data processing, which ensures both the quality of focusing and the phase accuracy. Based on the three-step processing schedule, the de-rotation operation is adopted to conquer the overlap in azimuth frequency domain, and the antenna sweep rate is discussed in tail. Moreover, the classic focusing kernel is applied for range and azimuth compressing. Furthermore, phase and compression-gain compensation function is given, which is implemented after deramp operation. Finally, the simulation results justify the effectiveness and precision of the proposed phase-preserving algorithm.