一种基于高相关性关键词的深度网络数据库采样方法

Yongqing Zheng, Yufang Bian, Xin Du, Hongchen Wu
{"title":"一种基于高相关性关键词的深度网络数据库采样方法","authors":"Yongqing Zheng, Yufang Bian, Xin Du, Hongchen Wu","doi":"10.1109/WISA.2012.25","DOIUrl":null,"url":null,"abstract":"Evaluation of the Deep Web data sources must be based on the data in the Web databases, then how to select the most representative keywords as a query word to obtain a large number of uniformly distributed data is a major difficulty, this paper proposed a Deep Web database sampling method based on high correlation keyword, using a graph based keyword-connected network to get query words, the method can get a random sample of high-quality data from the Deep Web data source more efficiently.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Web Database Sampling Method Based on High Correlation Keywords\",\"authors\":\"Yongqing Zheng, Yufang Bian, Xin Du, Hongchen Wu\",\"doi\":\"10.1109/WISA.2012.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of the Deep Web data sources must be based on the data in the Web databases, then how to select the most representative keywords as a query word to obtain a large number of uniformly distributed data is a major difficulty, this paper proposed a Deep Web database sampling method based on high correlation keyword, using a graph based keyword-connected network to get query words, the method can get a random sample of high-quality data from the Deep Web data source more efficiently.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

评估深层网络数据源中的数据必须基于Web数据库,那么如何选择最具代表性的关键词作为一个查询词获取大量均匀分布的数据是一个主要的困难,提出了一种深层网络数据库基于高度相关关键字的抽样方法,使用一个基于图的keyword-connected网络查询词,该方法可以获得高质量的随机样本的数据更有效地深层网络数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Web Database Sampling Method Based on High Correlation Keywords
Evaluation of the Deep Web data sources must be based on the data in the Web databases, then how to select the most representative keywords as a query word to obtain a large number of uniformly distributed data is a major difficulty, this paper proposed a Deep Web database sampling method based on high correlation keyword, using a graph based keyword-connected network to get query words, the method can get a random sample of high-quality data from the Deep Web data source more efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信