基于网格自适应直接搜索优化的Dirichlet边值问题数值解

Muhammad Jalil Ahmad, K. Günel
{"title":"基于网格自适应直接搜索优化的Dirichlet边值问题数值解","authors":"Muhammad Jalil Ahmad, K. Günel","doi":"10.52460/issc.2021.030","DOIUrl":null,"url":null,"abstract":"This study gives a different numerical approach for solving second order differential equation with a Dirichlet boundary condition. Mesh Adaptive Direct Search (MADS) algorithm is adopted to train the feed forward neural network used in this approach. As MADS is a derivative-free optimization algorithm, it helps us to reduce the time-consuming workload in the training stage. The results obtained from this approach are also compared with Generalized Pattern Search (GPS) algorithm.","PeriodicalId":136262,"journal":{"name":"5th International Students Science Congress","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of Dirichlet Boundary Value Problems using Mesh Adaptive Direct Search Optimization\",\"authors\":\"Muhammad Jalil Ahmad, K. Günel\",\"doi\":\"10.52460/issc.2021.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study gives a different numerical approach for solving second order differential equation with a Dirichlet boundary condition. Mesh Adaptive Direct Search (MADS) algorithm is adopted to train the feed forward neural network used in this approach. As MADS is a derivative-free optimization algorithm, it helps us to reduce the time-consuming workload in the training stage. The results obtained from this approach are also compared with Generalized Pattern Search (GPS) algorithm.\",\"PeriodicalId\":136262,\"journal\":{\"name\":\"5th International Students Science Congress\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Students Science Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52460/issc.2021.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Students Science Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52460/issc.2021.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有狄利克雷边界条件的二阶微分方程的另一种数值解法。该方法采用网格自适应直接搜索(MADS)算法对前馈神经网络进行训练。由于MADS是一种无导数优化算法,它可以帮助我们减少训练阶段的耗时工作量。并与广义模式搜索(GPS)算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of Dirichlet Boundary Value Problems using Mesh Adaptive Direct Search Optimization
This study gives a different numerical approach for solving second order differential equation with a Dirichlet boundary condition. Mesh Adaptive Direct Search (MADS) algorithm is adopted to train the feed forward neural network used in this approach. As MADS is a derivative-free optimization algorithm, it helps us to reduce the time-consuming workload in the training stage. The results obtained from this approach are also compared with Generalized Pattern Search (GPS) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信