全景超球的变分深度估计

Jingbo Miao, Yanwei Liu, Kan Wang, Jinxia Liu, Zhen Xu
{"title":"全景超球的变分深度估计","authors":"Jingbo Miao, Yanwei Liu, Kan Wang, Jinxia Liu, Zhen Xu","doi":"10.1109/ICIP46576.2022.9897914","DOIUrl":null,"url":null,"abstract":"Depth estimation for panorama is a key part of 3D scene understanding, and adopting discriminative models is the most common solution. However, due to the rectangular convolution kernel, these existing learning methods cannot efficiently extract the distorted features in panoramas. To this end, we propose OmniVAE, a generative model based on Conditional Variational Auto-Encoder (CVAE) and von Mises-Fisher (vMF) distribution, to strengthen the exclusive generative ability for spherical signals by mapping panoramas to hypersphere space. Further, to alleviate the side effects of manifold-mismatching caused by non-planar distribution, we put forward the Atypical Receptive Field (ARF) module to slightly shift the receptive field of the network and even take the distribution difference into account in the reconstruction loss. The quantitative and qualitative evaluations are performed on real-world and synthetic datasets, and the results show that OmniVAE outperforms the state-of-the-art methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Depth Estimation on Hypersphere for Panorama\",\"authors\":\"Jingbo Miao, Yanwei Liu, Kan Wang, Jinxia Liu, Zhen Xu\",\"doi\":\"10.1109/ICIP46576.2022.9897914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth estimation for panorama is a key part of 3D scene understanding, and adopting discriminative models is the most common solution. However, due to the rectangular convolution kernel, these existing learning methods cannot efficiently extract the distorted features in panoramas. To this end, we propose OmniVAE, a generative model based on Conditional Variational Auto-Encoder (CVAE) and von Mises-Fisher (vMF) distribution, to strengthen the exclusive generative ability for spherical signals by mapping panoramas to hypersphere space. Further, to alleviate the side effects of manifold-mismatching caused by non-planar distribution, we put forward the Atypical Receptive Field (ARF) module to slightly shift the receptive field of the network and even take the distribution difference into account in the reconstruction loss. The quantitative and qualitative evaluations are performed on real-world and synthetic datasets, and the results show that OmniVAE outperforms the state-of-the-art methods.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全景深度估计是三维场景理解的关键部分,采用判别模型是最常用的解决方案。然而,由于存在矩形卷积核,这些现有的学习方法无法有效地提取全景图中的畸变特征。为此,我们提出了一种基于条件变分自编码器(CVAE)和von Mises-Fisher (vMF)分布的OmniVAE生成模型,通过将全景图映射到超球空间来增强对球面信号的专属生成能力。此外,为了减轻非平面分布导致的流形不匹配的副作用,我们提出了非典型感受野(ARF)模块,以轻微移动网络的感受野,甚至在重建损失中考虑分布差异。在真实世界和合成数据集上进行了定量和定性评估,结果表明OmniVAE优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Depth Estimation on Hypersphere for Panorama
Depth estimation for panorama is a key part of 3D scene understanding, and adopting discriminative models is the most common solution. However, due to the rectangular convolution kernel, these existing learning methods cannot efficiently extract the distorted features in panoramas. To this end, we propose OmniVAE, a generative model based on Conditional Variational Auto-Encoder (CVAE) and von Mises-Fisher (vMF) distribution, to strengthen the exclusive generative ability for spherical signals by mapping panoramas to hypersphere space. Further, to alleviate the side effects of manifold-mismatching caused by non-planar distribution, we put forward the Atypical Receptive Field (ARF) module to slightly shift the receptive field of the network and even take the distribution difference into account in the reconstruction loss. The quantitative and qualitative evaluations are performed on real-world and synthetic datasets, and the results show that OmniVAE outperforms the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信