基于自回归模型的时延估计

M. Pallas, N. Martin, J. Martin
{"title":"基于自回归模型的时延估计","authors":"M. Pallas, N. Martin, J. Martin","doi":"10.1109/ICASSP.1987.1169733","DOIUrl":null,"url":null,"abstract":"From an active underwater acoustics experiment, we intend to estimate the time delays of the multipath propagation, in the case where the time differences of arrival are not large enough to be treated by classical methods. After estimating the propagation filter transfer function, we apply the autoregressive modelization to these frequential data. We deduce the delays values from the poles locations of the AR model. Simulations of the processing are presented. Finally, the method is applied to real data.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Time delay estimation by autoregressive modelization\",\"authors\":\"M. Pallas, N. Martin, J. Martin\",\"doi\":\"10.1109/ICASSP.1987.1169733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From an active underwater acoustics experiment, we intend to estimate the time delays of the multipath propagation, in the case where the time differences of arrival are not large enough to be treated by classical methods. After estimating the propagation filter transfer function, we apply the autoregressive modelization to these frequential data. We deduce the delays values from the poles locations of the AR model. Simulations of the processing are presented. Finally, the method is applied to real data.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

从一个有源水声实验中,我们打算估计在到达时间差不足以用经典方法处理的情况下,多径传播的时间延迟。在估计了传播滤波器传递函数后,我们对这些频率数据进行了自回归建模。我们从AR模型的极点位置推导出延迟值。并对该过程进行了仿真。最后,将该方法应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time delay estimation by autoregressive modelization
From an active underwater acoustics experiment, we intend to estimate the time delays of the multipath propagation, in the case where the time differences of arrival are not large enough to be treated by classical methods. After estimating the propagation filter transfer function, we apply the autoregressive modelization to these frequential data. We deduce the delays values from the poles locations of the AR model. Simulations of the processing are presented. Finally, the method is applied to real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信