基于随机矩阵和辨识的扩展目标跟踪模型参数自适应方法

Jin-Tao Tan, Guoqing Qi, Jun-Jie Qi, Yu-Jie Yang, Yinyi Li, A. Sheng
{"title":"基于随机矩阵和辨识的扩展目标跟踪模型参数自适应方法","authors":"Jin-Tao Tan, Guoqing Qi, Jun-Jie Qi, Yu-Jie Yang, Yinyi Li, A. Sheng","doi":"10.1109/ICCSI55536.2022.9970662","DOIUrl":null,"url":null,"abstract":"In many scenarios, the motion state and shape changes of the target need to be taken into account when tracking the target, as this allows for a better description of the target state. Many tracking methods based on random matrix (RM) theory tend to share a common drawback of inaccurate estimation of the extended state of the target when it undergoes high maneuvers. In this paper, an improved adaptive tracking method based on RM theory is proposed mainly for elliptical extended targets or group targets. The method uses convex packet algorithm to introduce the identification information, which successfully overcomes the drawback that the original method cannot achieve tracking due to random matrix divergence. The simulation results show that the improved adaptive method can effectively improve the tracking accuracy for elliptical extended targets.","PeriodicalId":421514,"journal":{"name":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Parameter Adaptive Approach of Extended Object Tracking Using Random Matrix and Identification\",\"authors\":\"Jin-Tao Tan, Guoqing Qi, Jun-Jie Qi, Yu-Jie Yang, Yinyi Li, A. Sheng\",\"doi\":\"10.1109/ICCSI55536.2022.9970662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many scenarios, the motion state and shape changes of the target need to be taken into account when tracking the target, as this allows for a better description of the target state. Many tracking methods based on random matrix (RM) theory tend to share a common drawback of inaccurate estimation of the extended state of the target when it undergoes high maneuvers. In this paper, an improved adaptive tracking method based on RM theory is proposed mainly for elliptical extended targets or group targets. The method uses convex packet algorithm to introduce the identification information, which successfully overcomes the drawback that the original method cannot achieve tracking due to random matrix divergence. The simulation results show that the improved adaptive method can effectively improve the tracking accuracy for elliptical extended targets.\",\"PeriodicalId\":421514,\"journal\":{\"name\":\"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSI55536.2022.9970662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI55536.2022.9970662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多情况下,在跟踪目标时需要考虑目标的运动状态和形状变化,因为这样可以更好地描述目标状态。许多基于随机矩阵(RM)理论的跟踪方法都有一个共同的缺点,即当目标进行高机动时,对目标的扩展状态估计不准确。本文提出了一种改进的基于RM理论的自适应跟踪方法,主要针对椭圆扩展目标或群目标。该方法采用凸包算法引入识别信息,成功克服了原方法由于矩阵随机发散而无法实现跟踪的缺点。仿真结果表明,改进的自适应方法可以有效地提高椭圆扩展目标的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Parameter Adaptive Approach of Extended Object Tracking Using Random Matrix and Identification
In many scenarios, the motion state and shape changes of the target need to be taken into account when tracking the target, as this allows for a better description of the target state. Many tracking methods based on random matrix (RM) theory tend to share a common drawback of inaccurate estimation of the extended state of the target when it undergoes high maneuvers. In this paper, an improved adaptive tracking method based on RM theory is proposed mainly for elliptical extended targets or group targets. The method uses convex packet algorithm to introduce the identification information, which successfully overcomes the drawback that the original method cannot achieve tracking due to random matrix divergence. The simulation results show that the improved adaptive method can effectively improve the tracking accuracy for elliptical extended targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信