{"title":"基于纵摇耦合冲击模型的GBS浮式甲板进、离坞数值分析","authors":"Mingsheng Chen, M. Zou, Ling Zhu, Liang Sun","doi":"10.1115/omae2019-95717","DOIUrl":null,"url":null,"abstract":"\n This paper aims to compare the impact responses in float-over installation for a gravity-based platform under two different simplifications of shock absorbers. A coupled heave-roll-pitch impact model based on the Cummins equation has been established to analyze the dynamic behaviors of installation system, in which the time-consuming convolution integral is replaced by a state-space model, resulting in a constant parameter time-domain model. In present dynamic model, the Leg Mating Units (LMUs) and the Deck Support Units (DSUs), known as shock absorbers, are simplified as vertical gap springs (compression only) with appropriate damping properties since the heave motion of the float-over installation system is the main contribution to the impact loads. Linear and nonlinear springs are assumed to evaluate how the properties of LMUs/DSUs will affect the heave impact response at docking stage and undocking stage. The influence of characteristics of LMU and DSU on the dynamic responses at docking stage is also addressed through the Poincare map and phase portraits.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Numerical Analysis of GBS Float-Over Deck Installation at Docking and Undocking Stages Based on a Coupled Heave-Roll-Pitch Impact Model\",\"authors\":\"Mingsheng Chen, M. Zou, Ling Zhu, Liang Sun\",\"doi\":\"10.1115/omae2019-95717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper aims to compare the impact responses in float-over installation for a gravity-based platform under two different simplifications of shock absorbers. A coupled heave-roll-pitch impact model based on the Cummins equation has been established to analyze the dynamic behaviors of installation system, in which the time-consuming convolution integral is replaced by a state-space model, resulting in a constant parameter time-domain model. In present dynamic model, the Leg Mating Units (LMUs) and the Deck Support Units (DSUs), known as shock absorbers, are simplified as vertical gap springs (compression only) with appropriate damping properties since the heave motion of the float-over installation system is the main contribution to the impact loads. Linear and nonlinear springs are assumed to evaluate how the properties of LMUs/DSUs will affect the heave impact response at docking stage and undocking stage. The influence of characteristics of LMU and DSU on the dynamic responses at docking stage is also addressed through the Poincare map and phase portraits.\",\"PeriodicalId\":120800,\"journal\":{\"name\":\"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of GBS Float-Over Deck Installation at Docking and Undocking Stages Based on a Coupled Heave-Roll-Pitch Impact Model
This paper aims to compare the impact responses in float-over installation for a gravity-based platform under two different simplifications of shock absorbers. A coupled heave-roll-pitch impact model based on the Cummins equation has been established to analyze the dynamic behaviors of installation system, in which the time-consuming convolution integral is replaced by a state-space model, resulting in a constant parameter time-domain model. In present dynamic model, the Leg Mating Units (LMUs) and the Deck Support Units (DSUs), known as shock absorbers, are simplified as vertical gap springs (compression only) with appropriate damping properties since the heave motion of the float-over installation system is the main contribution to the impact loads. Linear and nonlinear springs are assumed to evaluate how the properties of LMUs/DSUs will affect the heave impact response at docking stage and undocking stage. The influence of characteristics of LMU and DSU on the dynamic responses at docking stage is also addressed through the Poincare map and phase portraits.