高光谱图像的多目标端元提取

Hao Li, Jingjing Ma, Jia Liu, Maoguo Gong, Mingyang Zhang
{"title":"高光谱图像的多目标端元提取","authors":"Hao Li, Jingjing Ma, Jia Liu, Maoguo Gong, Mingyang Zhang","doi":"10.1109/CEC.2017.7969347","DOIUrl":null,"url":null,"abstract":"Endmember extraction is a critical step of spectral unmixing. In this paper, a novel endmember extraction algorithm based on evolutionary multi-objective optimization is proposed for hyperspectral remote sensing images. In the proposed method, endmember extraction is modeled as a multi-objective optimization problem. Then the root mean square error between the original image and its remixed image and the number of endmembers are chosen as two conflicting objective functions, which are simultaneously optimized by particle swarm optimization algorithm to find the best tradeoff solutions. In order to promote diversity and speed up the convergence of the algorithm, a new particle status updating strategy and a novel method for selecting leaders are designed. The experimental results on both simulated and real hyperspectral remote sensing images confirm the performance of the proposed approach over some existing methods.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-objective endmember extraction for hyperspectral images\",\"authors\":\"Hao Li, Jingjing Ma, Jia Liu, Maoguo Gong, Mingyang Zhang\",\"doi\":\"10.1109/CEC.2017.7969347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endmember extraction is a critical step of spectral unmixing. In this paper, a novel endmember extraction algorithm based on evolutionary multi-objective optimization is proposed for hyperspectral remote sensing images. In the proposed method, endmember extraction is modeled as a multi-objective optimization problem. Then the root mean square error between the original image and its remixed image and the number of endmembers are chosen as two conflicting objective functions, which are simultaneously optimized by particle swarm optimization algorithm to find the best tradeoff solutions. In order to promote diversity and speed up the convergence of the algorithm, a new particle status updating strategy and a novel method for selecting leaders are designed. The experimental results on both simulated and real hyperspectral remote sensing images confirm the performance of the proposed approach over some existing methods.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

端元提取是光谱解混的关键步骤。提出了一种基于进化多目标优化的高光谱遥感影像端元提取算法。在该方法中,端元提取被建模为一个多目标优化问题。然后选取原始图像与混合图像的均方根误差和端元个数作为两个相互冲突的目标函数,采用粒子群优化算法对其进行优化,寻找最佳折衷解;为了提高算法的多样性,加快算法的收敛速度,设计了一种新的粒子状态更新策略和一种新的leader选择方法。在模拟和真实高光谱遥感图像上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective endmember extraction for hyperspectral images
Endmember extraction is a critical step of spectral unmixing. In this paper, a novel endmember extraction algorithm based on evolutionary multi-objective optimization is proposed for hyperspectral remote sensing images. In the proposed method, endmember extraction is modeled as a multi-objective optimization problem. Then the root mean square error between the original image and its remixed image and the number of endmembers are chosen as two conflicting objective functions, which are simultaneously optimized by particle swarm optimization algorithm to find the best tradeoff solutions. In order to promote diversity and speed up the convergence of the algorithm, a new particle status updating strategy and a novel method for selecting leaders are designed. The experimental results on both simulated and real hyperspectral remote sensing images confirm the performance of the proposed approach over some existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信