基于CNN-LSTM的日语考试作文自动评分系统

Amanda Nur Oktaviani, Marwah Zulfanny Alief, Lea Santiar, Prima Dewi Purnamasari, A. A. P. Ratna
{"title":"基于CNN-LSTM的日语考试作文自动评分系统","authors":"Amanda Nur Oktaviani, Marwah Zulfanny Alief, Lea Santiar, Prima Dewi Purnamasari, A. A. P. Ratna","doi":"10.1109/QIR54354.2021.9716165","DOIUrl":null,"url":null,"abstract":"This paper discusses the design for the development of an automatic essay grading system (SIMPLEO) using variations of the Convolutional Neural Network (CNN) and hybrid Convolutional Neural Network (CNN)-Long Short-term Memory (LSTM) for the assessment of the Japanese essay exam which is being developed by the Department of Electrical Engineering, University of Indonesia. Of the several variations tested, the most stable model is a model that has CNN-LSTM with kernel sizes of 5, the number of filters 64, pool size of 4, LSTM hidden units of 25, batch size of 50, repeated training of 50 epochs, and the SGD optimizer with a learning rate of 0.01 produces the highest prediction accuracy, which is 70.07%.","PeriodicalId":446396,"journal":{"name":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Essay Grading System for Japanese Language Exam using CNN-LSTM\",\"authors\":\"Amanda Nur Oktaviani, Marwah Zulfanny Alief, Lea Santiar, Prima Dewi Purnamasari, A. A. P. Ratna\",\"doi\":\"10.1109/QIR54354.2021.9716165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design for the development of an automatic essay grading system (SIMPLEO) using variations of the Convolutional Neural Network (CNN) and hybrid Convolutional Neural Network (CNN)-Long Short-term Memory (LSTM) for the assessment of the Japanese essay exam which is being developed by the Department of Electrical Engineering, University of Indonesia. Of the several variations tested, the most stable model is a model that has CNN-LSTM with kernel sizes of 5, the number of filters 64, pool size of 4, LSTM hidden units of 25, batch size of 50, repeated training of 50 epochs, and the SGD optimizer with a learning rate of 0.01 produces the highest prediction accuracy, which is 70.07%.\",\"PeriodicalId\":446396,\"journal\":{\"name\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QIR54354.2021.9716165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR54354.2021.9716165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了使用卷积神经网络(CNN)和混合卷积神经网络(CNN)长短期记忆(LSTM)的变体来开发自动作文评分系统(SIMPLEO)的设计,用于评估印度尼西亚大学电子工程系正在开发的日语作文考试。在测试的几个变量中,最稳定的模型是CNN-LSTM的核大小为5,过滤器数量为64,池大小为4,LSTM隐藏单元为25,批大小为50,重复训练50次的模型,学习速率为0.01的SGD优化器产生的预测精度最高,为70.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Essay Grading System for Japanese Language Exam using CNN-LSTM
This paper discusses the design for the development of an automatic essay grading system (SIMPLEO) using variations of the Convolutional Neural Network (CNN) and hybrid Convolutional Neural Network (CNN)-Long Short-term Memory (LSTM) for the assessment of the Japanese essay exam which is being developed by the Department of Electrical Engineering, University of Indonesia. Of the several variations tested, the most stable model is a model that has CNN-LSTM with kernel sizes of 5, the number of filters 64, pool size of 4, LSTM hidden units of 25, batch size of 50, repeated training of 50 epochs, and the SGD optimizer with a learning rate of 0.01 produces the highest prediction accuracy, which is 70.07%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信