Hanhe Lin, Jeremiah D. Deng, B. Woodford, Ahmad Shahi
{"title":"视频监控中实时异常事件检测的在线加权聚类","authors":"Hanhe Lin, Jeremiah D. Deng, B. Woodford, Ahmad Shahi","doi":"10.1145/2964284.2967279","DOIUrl":null,"url":null,"abstract":"Detecting abnormal events in video surveillance is a challenging problem due to the large scale, stream fashion video data as well as the real-time constraint. In this paper, we present an online, adaptive, and real-time framework to address this problem. The spatial locations in a frame is partitioned into grids, in each grid the proposed Adaptive Multi-scale Histogram Optical Flow (AMHOF) features are extracted and modelled by an Online Weighted Clustering (OWC) algorithm. The AMHOFs which cannot be fit to a cluster with large weight are regarded as abnormal events. The OWC algorithm is simple to implement and computational efficient. In addition, we improve the detection performance by a Multiple Target Tracking (MTT) algorithm. Experimental results demonstrate our approach outperforms the state-of-the-art approaches in pixel-level rate of detection at a processing speed of 30 FPS.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Online Weighted Clustering for Real-time Abnormal Event Detection in Video Surveillance\",\"authors\":\"Hanhe Lin, Jeremiah D. Deng, B. Woodford, Ahmad Shahi\",\"doi\":\"10.1145/2964284.2967279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting abnormal events in video surveillance is a challenging problem due to the large scale, stream fashion video data as well as the real-time constraint. In this paper, we present an online, adaptive, and real-time framework to address this problem. The spatial locations in a frame is partitioned into grids, in each grid the proposed Adaptive Multi-scale Histogram Optical Flow (AMHOF) features are extracted and modelled by an Online Weighted Clustering (OWC) algorithm. The AMHOFs which cannot be fit to a cluster with large weight are regarded as abnormal events. The OWC algorithm is simple to implement and computational efficient. In addition, we improve the detection performance by a Multiple Target Tracking (MTT) algorithm. Experimental results demonstrate our approach outperforms the state-of-the-art approaches in pixel-level rate of detection at a processing speed of 30 FPS.\",\"PeriodicalId\":140670,\"journal\":{\"name\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2964284.2967279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Weighted Clustering for Real-time Abnormal Event Detection in Video Surveillance
Detecting abnormal events in video surveillance is a challenging problem due to the large scale, stream fashion video data as well as the real-time constraint. In this paper, we present an online, adaptive, and real-time framework to address this problem. The spatial locations in a frame is partitioned into grids, in each grid the proposed Adaptive Multi-scale Histogram Optical Flow (AMHOF) features are extracted and modelled by an Online Weighted Clustering (OWC) algorithm. The AMHOFs which cannot be fit to a cluster with large weight are regarded as abnormal events. The OWC algorithm is simple to implement and computational efficient. In addition, we improve the detection performance by a Multiple Target Tracking (MTT) algorithm. Experimental results demonstrate our approach outperforms the state-of-the-art approaches in pixel-level rate of detection at a processing speed of 30 FPS.