使用先验过程知识设计增强分类器:正则化最大似然

M. S. Esfahani, A. Zollanvari, Byung-Jun Yoon, E. Dougherty
{"title":"使用先验过程知识设计增强分类器:正则化最大似然","authors":"M. S. Esfahani, A. Zollanvari, Byung-Jun Yoon, E. Dougherty","doi":"10.1109/GENSiPS.2011.6169451","DOIUrl":null,"url":null,"abstract":"We propose a novel optimization-based paradigm for designing enhanced classifiers. The proposed paradigm allows us to incorporate available prior process knowledge into classifier design, thereby improving the performance of the resulting classifiers. In this work, we focus on dynamical systems that can be represented as finite-state multi-dimensional stochastic processes that possess labeled steady-state distributions. Given prior operational knowledge of the process, our goal is to build a classifier that can accurately label future observations obtained from the steady-state, by utilizing both the available prior knowledge and the training data. Simulation results show that the proposed paradigm yields improved classifiers that outperform traditional classifiers that use only training data.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing enhanced classifiers using prior process knowledge: Regularized maximum-likelihood\",\"authors\":\"M. S. Esfahani, A. Zollanvari, Byung-Jun Yoon, E. Dougherty\",\"doi\":\"10.1109/GENSiPS.2011.6169451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel optimization-based paradigm for designing enhanced classifiers. The proposed paradigm allows us to incorporate available prior process knowledge into classifier design, thereby improving the performance of the resulting classifiers. In this work, we focus on dynamical systems that can be represented as finite-state multi-dimensional stochastic processes that possess labeled steady-state distributions. Given prior operational knowledge of the process, our goal is to build a classifier that can accurately label future observations obtained from the steady-state, by utilizing both the available prior knowledge and the training data. Simulation results show that the proposed paradigm yields improved classifiers that outperform traditional classifiers that use only training data.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的基于优化的模式来设计增强的分类器。提出的范式允许我们将可用的先验过程知识纳入分类器设计,从而提高最终分类器的性能。在这项工作中,我们关注的是可以表示为具有标记稳态分布的有限状态多维随机过程的动力系统。给定该过程的先验操作知识,我们的目标是通过利用可用的先验知识和训练数据建立一个分类器,该分类器可以准确地标记从稳态中获得的未来观察结果。仿真结果表明,所提出的范式产生的分类器优于仅使用训练数据的传统分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing enhanced classifiers using prior process knowledge: Regularized maximum-likelihood
We propose a novel optimization-based paradigm for designing enhanced classifiers. The proposed paradigm allows us to incorporate available prior process knowledge into classifier design, thereby improving the performance of the resulting classifiers. In this work, we focus on dynamical systems that can be represented as finite-state multi-dimensional stochastic processes that possess labeled steady-state distributions. Given prior operational knowledge of the process, our goal is to build a classifier that can accurately label future observations obtained from the steady-state, by utilizing both the available prior knowledge and the training data. Simulation results show that the proposed paradigm yields improved classifiers that outperform traditional classifiers that use only training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信