Lara Novaresi, Marco Terenzi, P. Malcovati, A. Mazzanti, E. Bonizzoni
{"title":"基于pmut的高集成超声成像系统的采集RX链","authors":"Lara Novaresi, Marco Terenzi, P. Malcovati, A. Mazzanti, E. Bonizzoni","doi":"10.1109/prime55000.2022.9816836","DOIUrl":null,"url":null,"abstract":"This paper presents a design solution for a PMUT RX front-end for high performance portable ultrasound medical imaging systems. The PMUT transducer is part of a ID array working in the 1-4 MHz frequency range. Adequate SNR and low power dissipation are ensured in the RX path thanks to a careful design flow focused onto specific imaging requirements, extracted considering the lumped-parameter equivalent circuit model of the transducer. Programmable gain [25dB-35dB] is implemented to comply with a wide range of input acoustic pressure while distortion parameters are designed in order to provide good imaging qualities. Transistor level design and simulations performed in a BCD-SOI 0.16-μm technology are shown as well.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acquisition RX Chain for PMUT-Based Highly Integrated Ultrasound Imaging Systems\",\"authors\":\"Lara Novaresi, Marco Terenzi, P. Malcovati, A. Mazzanti, E. Bonizzoni\",\"doi\":\"10.1109/prime55000.2022.9816836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design solution for a PMUT RX front-end for high performance portable ultrasound medical imaging systems. The PMUT transducer is part of a ID array working in the 1-4 MHz frequency range. Adequate SNR and low power dissipation are ensured in the RX path thanks to a careful design flow focused onto specific imaging requirements, extracted considering the lumped-parameter equivalent circuit model of the transducer. Programmable gain [25dB-35dB] is implemented to comply with a wide range of input acoustic pressure while distortion parameters are designed in order to provide good imaging qualities. Transistor level design and simulations performed in a BCD-SOI 0.16-μm technology are shown as well.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acquisition RX Chain for PMUT-Based Highly Integrated Ultrasound Imaging Systems
This paper presents a design solution for a PMUT RX front-end for high performance portable ultrasound medical imaging systems. The PMUT transducer is part of a ID array working in the 1-4 MHz frequency range. Adequate SNR and low power dissipation are ensured in the RX path thanks to a careful design flow focused onto specific imaging requirements, extracted considering the lumped-parameter equivalent circuit model of the transducer. Programmable gain [25dB-35dB] is implemented to comply with a wide range of input acoustic pressure while distortion parameters are designed in order to provide good imaging qualities. Transistor level design and simulations performed in a BCD-SOI 0.16-μm technology are shown as well.