关节概率行人头部和身体方向估计

F. Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, D. Gavrila
{"title":"关节概率行人头部和身体方向估计","authors":"F. Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, D. Gavrila","doi":"10.1109/IVS.2014.6856532","DOIUrl":null,"url":null,"abstract":"We present an approach for the joint probabilistic estimation of pedestrian head and body orientation in the context of intelligent vehicles. For both, head and body, we convert the output of a set of orientation-specific detectors into a full (continuous) probability density function. The parts are localized with a pictorial structure approach which balances part-based detector output with spatial constraints. Head and body orientation estimates are furthermore coupled probabilistically to account for anatomical constraints. Finally, the coupled single-frame orientation estimates are integrated over time by particle filtering. The experiments involve 37 pedestrian tracks obtained from an external stereo vision-based pedestrian detector in realistic traffic settings. We show that the proposed joint probabilistic orientation estimation approach reduces the mean head and body orientation error by 10 degrees and more.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Joint probabilistic pedestrian head and body orientation estimation\",\"authors\":\"F. Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, D. Gavrila\",\"doi\":\"10.1109/IVS.2014.6856532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach for the joint probabilistic estimation of pedestrian head and body orientation in the context of intelligent vehicles. For both, head and body, we convert the output of a set of orientation-specific detectors into a full (continuous) probability density function. The parts are localized with a pictorial structure approach which balances part-based detector output with spatial constraints. Head and body orientation estimates are furthermore coupled probabilistically to account for anatomical constraints. Finally, the coupled single-frame orientation estimates are integrated over time by particle filtering. The experiments involve 37 pedestrian tracks obtained from an external stereo vision-based pedestrian detector in realistic traffic settings. We show that the proposed joint probabilistic orientation estimation approach reduces the mean head and body orientation error by 10 degrees and more.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

提出了一种智能车辆中行人头部和身体方向的联合概率估计方法。对于头部和身体,我们将一组定向检测器的输出转换为完整的(连续的)概率密度函数。零件用图形结构方法进行定位,该方法平衡了基于零件的检测器输出和空间约束。头部和身体方向估计进一步耦合概率,以说明解剖约束。最后,通过粒子滤波对单帧方向估计随时间进行积分。实验涉及在现实交通环境中从基于外部立体视觉的行人检测器获得的37条行人轨迹。我们表明,所提出的联合概率方向估计方法将头和身体的平均方向误差降低了10度以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint probabilistic pedestrian head and body orientation estimation
We present an approach for the joint probabilistic estimation of pedestrian head and body orientation in the context of intelligent vehicles. For both, head and body, we convert the output of a set of orientation-specific detectors into a full (continuous) probability density function. The parts are localized with a pictorial structure approach which balances part-based detector output with spatial constraints. Head and body orientation estimates are furthermore coupled probabilistically to account for anatomical constraints. Finally, the coupled single-frame orientation estimates are integrated over time by particle filtering. The experiments involve 37 pedestrian tracks obtained from an external stereo vision-based pedestrian detector in realistic traffic settings. We show that the proposed joint probabilistic orientation estimation approach reduces the mean head and body orientation error by 10 degrees and more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信