基于大数据平台多标杆应用的公共参数集提取框架优化

Jongyeop Kim, Abhilash Kancharla, Jongho Seol, Indy Park, N. Park
{"title":"基于大数据平台多标杆应用的公共参数集提取框架优化","authors":"Jongyeop Kim, Abhilash Kancharla, Jongho Seol, Indy Park, N. Park","doi":"10.2991/IJNDC.2018.4.6.1","DOIUrl":null,"url":null,"abstract":"The Apache Hadoop Distributed File System (HDFS) [1] is one of the prominent engines as a big data processing framework [2] with its distributed processing capabilities over a cluster that composed of multiple nodes [3]. The core technology of this open source is called map and reduce, which is accomplished by appropriately splitting a big task into each node and merging it through inter process communication.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":"48 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Common Parameter Set Extraction Framework by Multiple Benchmarking Applications on a Big Data Platform\",\"authors\":\"Jongyeop Kim, Abhilash Kancharla, Jongho Seol, Indy Park, N. Park\",\"doi\":\"10.2991/IJNDC.2018.4.6.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Apache Hadoop Distributed File System (HDFS) [1] is one of the prominent engines as a big data processing framework [2] with its distributed processing capabilities over a cluster that composed of multiple nodes [3]. The core technology of this open source is called map and reduce, which is accomplished by appropriately splitting a big task into each node and merging it through inter process communication.\",\"PeriodicalId\":318936,\"journal\":{\"name\":\"Int. J. Networked Distributed Comput.\",\"volume\":\"48 23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Networked Distributed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/IJNDC.2018.4.6.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/IJNDC.2018.4.6.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Apache Hadoop分布式文件系统(Hadoop Distributed File System, HDFS)[1]作为大数据处理框架的突出引擎之一[2],其在由多个节点组成的集群上具有分布式处理能力[3]。这个开放源代码的核心技术称为map and reduce,它通过将一个大任务适当地拆分到每个节点,并通过进程间通信将其合并来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Common Parameter Set Extraction Framework by Multiple Benchmarking Applications on a Big Data Platform
The Apache Hadoop Distributed File System (HDFS) [1] is one of the prominent engines as a big data processing framework [2] with its distributed processing capabilities over a cluster that composed of multiple nodes [3]. The core technology of this open source is called map and reduce, which is accomplished by appropriately splitting a big task into each node and merging it through inter process communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信