{"title":"基于流量建模和生成新框架的网络测试*","authors":"O. A. Adeleke, Nicholas Bastin, D. Gurkan","doi":"10.1109/ICCCN49398.2020.9209685","DOIUrl":null,"url":null,"abstract":"Network traffic modeling plays an important role in the generation of realistic network traffic in test environments. Especially in cases where researchers carry out experiments with real production-like traffic, as seen in specific home, enterprise, campus, LAN, or WAN networks. We present our ongoing work on a new framework that enables the methodical creation of application-agnostic traffic models from given network traces of a known network topology. The framework then uses these models to generate realistic traffic on a given network topology. We share a preliminary evaluation of the framework based on repeatable experiments where we model a typical web application traffic and then regenerate the traffic based on the model in a test network on our VTS (Virtual Topology Services) testbed.","PeriodicalId":137835,"journal":{"name":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Testing Using a Novel Framework for Traffic Modeling and Generation*\",\"authors\":\"O. A. Adeleke, Nicholas Bastin, D. Gurkan\",\"doi\":\"10.1109/ICCCN49398.2020.9209685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic modeling plays an important role in the generation of realistic network traffic in test environments. Especially in cases where researchers carry out experiments with real production-like traffic, as seen in specific home, enterprise, campus, LAN, or WAN networks. We present our ongoing work on a new framework that enables the methodical creation of application-agnostic traffic models from given network traces of a known network topology. The framework then uses these models to generate realistic traffic on a given network topology. We share a preliminary evaluation of the framework based on repeatable experiments where we model a typical web application traffic and then regenerate the traffic based on the model in a test network on our VTS (Virtual Topology Services) testbed.\",\"PeriodicalId\":137835,\"journal\":{\"name\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th International Conference on Computer Communications and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN49398.2020.9209685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th International Conference on Computer Communications and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN49398.2020.9209685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Testing Using a Novel Framework for Traffic Modeling and Generation*
Network traffic modeling plays an important role in the generation of realistic network traffic in test environments. Especially in cases where researchers carry out experiments with real production-like traffic, as seen in specific home, enterprise, campus, LAN, or WAN networks. We present our ongoing work on a new framework that enables the methodical creation of application-agnostic traffic models from given network traces of a known network topology. The framework then uses these models to generate realistic traffic on a given network topology. We share a preliminary evaluation of the framework based on repeatable experiments where we model a typical web application traffic and then regenerate the traffic based on the model in a test network on our VTS (Virtual Topology Services) testbed.