在数据驱动的fMRI分析中捕捉受试者变异性:一个图理论比较

Jonathan Laney, Kelly P Westlake, Sai Ma, Elizabeth J Woytowicz, T. Adalı
{"title":"在数据驱动的fMRI分析中捕捉受试者变异性:一个图理论比较","authors":"Jonathan Laney, Kelly P Westlake, Sai Ma, Elizabeth J Woytowicz, T. Adalı","doi":"10.1109/CISS.2014.6814109","DOIUrl":null,"url":null,"abstract":"Recent simulation studies, using functional magnetic resonance imaging (fMRI) like data, have shown that independent vector analysis (IVA) is a superior solution for capturing subject variability when compared to the popular group independent component analysis. This is of fundamental importance for identifying group differences which is a common goal of medical research. Nevertheless, there have not been similar studies on the effectiveness of IVA using real fMRI data. The main difficulties when working with real data are the lack of a ground truth and the high variability among subjects when performing the analysis. In this paper, we present a graph-theoretic approach to effectively compare an algorithm's ability to capture subject variability for real fMRI data and also address the important issue of order selection for capturing subject variability.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Capturing subject variability in data driven fMRI analysis: A graph theoretical comparison\",\"authors\":\"Jonathan Laney, Kelly P Westlake, Sai Ma, Elizabeth J Woytowicz, T. Adalı\",\"doi\":\"10.1109/CISS.2014.6814109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent simulation studies, using functional magnetic resonance imaging (fMRI) like data, have shown that independent vector analysis (IVA) is a superior solution for capturing subject variability when compared to the popular group independent component analysis. This is of fundamental importance for identifying group differences which is a common goal of medical research. Nevertheless, there have not been similar studies on the effectiveness of IVA using real fMRI data. The main difficulties when working with real data are the lack of a ground truth and the high variability among subjects when performing the analysis. In this paper, we present a graph-theoretic approach to effectively compare an algorithm's ability to capture subject variability for real fMRI data and also address the important issue of order selection for capturing subject variability.\",\"PeriodicalId\":169460,\"journal\":{\"name\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2014.6814109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近使用功能磁共振成像(fMRI)等数据的模拟研究表明,与流行的群体独立成分分析相比,独立矢量分析(IVA)是捕获受试者变异性的优越解决方案。这对于确定群体差异至关重要,而群体差异是医学研究的共同目标。然而,目前还没有使用真实的fMRI数据对IVA的有效性进行类似的研究。处理真实数据时的主要困难是在进行分析时缺乏基本真理和受试者之间的高度可变性。在本文中,我们提出了一种图论方法来有效地比较算法捕获真实fMRI数据的受试者变异性的能力,并解决了捕获受试者变异性的顺序选择的重要问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing subject variability in data driven fMRI analysis: A graph theoretical comparison
Recent simulation studies, using functional magnetic resonance imaging (fMRI) like data, have shown that independent vector analysis (IVA) is a superior solution for capturing subject variability when compared to the popular group independent component analysis. This is of fundamental importance for identifying group differences which is a common goal of medical research. Nevertheless, there have not been similar studies on the effectiveness of IVA using real fMRI data. The main difficulties when working with real data are the lack of a ground truth and the high variability among subjects when performing the analysis. In this paper, we present a graph-theoretic approach to effectively compare an algorithm's ability to capture subject variability for real fMRI data and also address the important issue of order selection for capturing subject variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信